我有一个数据帧
df <- data.frame(time = c("2015-09-07 00:32:19", "2015-09-07 01:02:30", "2015-09-07 01:31:36", "2015-09-07 01:47:45",
"2015-09-07 02:00:17", "2015-09-07 02:07:30", "2015-09-07 03:39:41", "2015-09-07 04:04:21", "2015-09-07 04:04:21", "2015-09-07 04:04:22"),
inOut = c("IN", "OUT", "IN", "IN", "IN", "IN", "IN", "OUT", "IN", "OUT"))
> df
time inOut
1 2015-09-07 00:32:19 IN
2 2015-09-07 01:02:30 OUT
3 2015-09-07 01:31:36 IN
4 2015-09-07 01:47:45 IN
5 2015-09-07 02:00:17 IN
6 2015-09-07 02:07:30 IN
7 2015-09-07 03:39:41 IN
8 2015-09-07 04:04:21 OUT
9 2015-09-07 04:04:21 IN
10 2015-09-07 04:04:22 OUT
>
Run Code Online (Sandbox Code Playgroud)
我想计算每15分钟IN/OUT的计数数量,我可以通过创建另一个in_df,out_df,每15分钟切割这些数据帧,然后将它们合并在一起以获得我的结果来实现.outdf是我的预期结果.
in_df <- df[which(df$inOut== "IN"),]
out_df <- df[which(df$inOut== "OUT"),]
a <- data.frame(table(cut(as.POSIXct(in_df$time), breaks="15 mins")))
b <- data.frame(table(cut(as.POSIXct(out_df$time), breaks="15 mins")))
colnames(b) <- c("Time", "Out")
colnames(a) <- c("Time", "In")
outdf <- merge(a,b, all=TRUE)
outdf[is.na(outdf)] <- 0
> outdf
Time In Out
1 2015-09-07 00:32:00 1 0
2 2015-09-07 00:47:00 0 0
3 2015-09-07 01:02:00 0 1
4 2015-09-07 01:17:00 1 0
5 2015-09-07 01:32:00 0 0
6 2015-09-07 01:47:00 2 0
7 2015-09-07 02:02:00 1 0
8 2015-09-07 02:17:00 0 0
9 2015-09-07 02:32:00 0 0
10 2015-09-07 02:47:00 0 0
11 2015-09-07 03:02:00 0 0
12 2015-09-07 03:17:00 0 0
13 2015-09-07 03:32:00 1 0
14 2015-09-07 03:47:00 0 0
15 2015-09-07 04:02:00 1 2
Run Code Online (Sandbox Code Playgroud)
我的问题是如何使用data.table来获得相同的结果?
在data.table中,我会这样做
library(data.table)
setDT(df)
df[, timeCut := cut(as.POSIXct(time), breaks="15 mins")]
df[J(timeCut = levels(timeCut)),
as.list(table(inOut)),
on = "timeCut",
by = .EACHI]
Run Code Online (Sandbox Code Playgroud)
这使:
timeCut IN OUT
1: 2015-09-07 00:32:00 1 0
2: 2015-09-07 00:47:00 0 0
3: 2015-09-07 01:02:00 0 1
4: 2015-09-07 01:17:00 1 0
5: 2015-09-07 01:32:00 0 0
6: 2015-09-07 01:47:00 2 0
7: 2015-09-07 02:02:00 1 0
8: 2015-09-07 02:17:00 0 0
9: 2015-09-07 02:32:00 0 0
10: 2015-09-07 02:47:00 0 0
11: 2015-09-07 03:02:00 0 0
12: 2015-09-07 03:17:00 0 0
13: 2015-09-07 03:32:00 1 0
14: 2015-09-07 03:47:00 0 0
15: 2015-09-07 04:02:00 1 2
Run Code Online (Sandbox Code Playgroud)
说明最后一部分是类似的DT[i=J(x=my_x), j, on="x", by=.EACHI],可以理解为:
DT栏x上my_x.j对每个确定的子集做my_x.在这种情况下,j=as.list(table(inOut)).该表必须被强制转换为列表以创建多个列(每个级别一个inOut).