如何检查一个二维NumPy数组是否包含特定的值模式?

Aug*_*sta 6 python arrays numpy pattern-matching

我有一个大NumPy.array field_array而小的数组match_array,都由int值组成.使用以下示例,如何检查match_array形状的任何段是否field_array包含与其中的值完全对应的值match_array

import numpy
raw_field = ( 24,  25,  26,  27,  28,  29,  30,  31,  23, \
              33,  34,  35,  36,  37,  38,  39,  40,  32, \
             -39, -38, -37, -36, -35, -34, -33, -32, -40, \
             -30, -29, -28, -27, -26, -25, -24, -23, -31, \
             -21, -20, -19, -18, -17, -16, -15, -14, -22, \
             -12, -11, -10,  -9,  -8,  -7,  -6,  -5, -13, \
              -3,  -2,  -1,   0,   1,   2,   3,   4,  -4, \
               6,   7,   8,   4,   5,   6,   7,  13,   5, \
              15,  16,  17,   8,   9,  10,  11,  22,  14)
field_array = numpy.array(raw_field, int).reshape(9,9)
match_array = numpy.arange(12).reshape(3,4)
Run Code Online (Sandbox Code Playgroud)

这些例子应该回归,True因为所描述的模式是match_array对齐的[6:9,3:7].

Div*_*kar 10

方法#1

这种方法从派生a solutionImplement Matlab's im2col 'sliding' in python这是旨在rearrange sliding blocks from a 2D array into columns.因此,为了解决我们的情况,那些滑动块field_array可以堆叠为列,并与列矢量版本进行比较match_array.

这是重新排列/堆叠功能的正式定义 -

def im2col(A,BLKSZ):   

    # Parameters
    M,N = A.shape
    col_extent = N - BLKSZ[1] + 1
    row_extent = M - BLKSZ[0] + 1

    # Get Starting block indices
    start_idx = np.arange(BLKSZ[0])[:,None]*N + np.arange(BLKSZ[1])

    # Get offsetted indices across the height and width of input array
    offset_idx = np.arange(row_extent)[:,None]*N + np.arange(col_extent)

    # Get all actual indices & index into input array for final output
    return np.take (A,start_idx.ravel()[:,None] + offset_idx.ravel())
Run Code Online (Sandbox Code Playgroud)

为了解决我们的情况,这里的实现基于im2col-

# Get sliding blocks of shape same as match_array from field_array into columns
# Then, compare them with a column vector version of match array.
col_match = im2col(field_array,match_array.shape) == match_array.ravel()[:,None]

# Shape of output array that has field_array compared against a sliding match_array
out_shape = np.asarray(field_array.shape) - np.asarray(match_array.shape) + 1

# Now, see if all elements in a column are ONES and reshape to out_shape. 
# Finally, find the position of TRUE indices
R,C = np.where(col_match.all(0).reshape(out_shape))
Run Code Online (Sandbox Code Playgroud)

问题中给定样本的输出将是 -

In [151]: R,C
Out[151]: (array([6]), array([3]))
Run Code Online (Sandbox Code Playgroud)

方法#2

鉴于opencv已经具有模板匹配功能,可以实现差异,您可以使用它并查找零差异,这将是您的匹配位置.所以,如果你有权访问cv2(opencv模块),那么实现看起来像这样 -

import cv2
from cv2 import matchTemplate as cv2m

M = cv2m(field_array.astype('uint8'),match_array.astype('uint8'),cv2.TM_SQDIFF)
R,C = np.where(M==0)
Run Code Online (Sandbox Code Playgroud)

给我们 -

In [204]: R,C
Out[204]: (array([6]), array([3]))
Run Code Online (Sandbox Code Playgroud)

标杆

本节比较了解决问题所建议的所有方法的运行时间.本节中列出的各种方法的功劳归于其贡献者.

方法定义 -

def seek_array(search_in, search_for, return_coords = False):
    si_x, si_y = search_in.shape
    sf_x, sf_y = search_for.shape
    for y in xrange(si_y-sf_y+1):
        for x in xrange(si_x-sf_x+1):
            if numpy.array_equal(search_for, search_in[x:x+sf_x, y:y+sf_y]):
                return (x,y) if return_coords else True
    return None if return_coords else False

def skimage_based(field_array,match_array):
    windows = view_as_windows(field_array, match_array.shape)
    return (windows == match_array).all(axis=(2,3)).nonzero()

def im2col_based(field_array,match_array):   
    col_match = im2col(field_array,match_array.shape)==match_array.ravel()[:,None]
    out_shape = np.asarray(field_array.shape) - np.asarray(match_array.shape) + 1  
    return np.where(col_match.all(0).reshape(out_shape))

def cv2_based(field_array,match_array):
    M = cv2m(field_array.astype('uint8'),match_array.astype('uint8'),cv2.TM_SQDIFF)
    return np.where(M==0)
Run Code Online (Sandbox Code Playgroud)

运行时测试 -

案例#1(问题的样本数据):

In [11]: field_array
Out[11]: 
array([[ 24,  25,  26,  27,  28,  29,  30,  31,  23],
       [ 33,  34,  35,  36,  37,  38,  39,  40,  32],
       [-39, -38, -37, -36, -35, -34, -33, -32, -40],
       [-30, -29, -28, -27, -26, -25, -24, -23, -31],
       [-21, -20, -19, -18, -17, -16, -15, -14, -22],
       [-12, -11, -10,  -9,  -8,  -7,  -6,  -5, -13],
       [ -3,  -2,  -1,   0,   1,   2,   3,   4,  -4],
       [  6,   7,   8,   4,   5,   6,   7,  13,   5],
       [ 15,  16,  17,   8,   9,  10,  11,  22,  14]])

In [12]: match_array
Out[12]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [13]: %timeit seek_array(field_array, match_array, return_coords = False)
1000 loops, best of 3: 465 µs per loop

In [14]: %timeit skimage_based(field_array,match_array)
10000 loops, best of 3: 97.9 µs per loop

In [15]: %timeit im2col_based(field_array,match_array)
10000 loops, best of 3: 74.3 µs per loop

In [16]: %timeit cv2_based(field_array,match_array)
10000 loops, best of 3: 30 µs per loop
Run Code Online (Sandbox Code Playgroud)

案例#2(更大的随机数据):

In [17]: field_array = np.random.randint(0,4,(256,256))

In [18]: match_array = field_array[100:116,100:116].copy()

In [19]: %timeit seek_array(field_array, match_array, return_coords = False)
1 loops, best of 3: 400 ms per loop

In [20]: %timeit skimage_based(field_array,match_array)
10 loops, best of 3: 54.3 ms per loop

In [21]: %timeit im2col_based(field_array,match_array)
10 loops, best of 3: 125 ms per loop

In [22]: %timeit cv2_based(field_array,match_array)
100 loops, best of 3: 4.08 ms per loop
Run Code Online (Sandbox Code Playgroud)