Nac*_*uel 2 python performance list
我有一组日期:
dates1 = {'21/5/2015', '4/4/2015', '15/6/2015', '30/1/2015', '19/3/2015', '25/2/2015', '25/5/2015', '8/2/2015', '6/6/2015', '15/3/2015', '15/1/2015', '30/5/2015'}
Run Code Online (Sandbox Code Playgroud)
相同的日期出现在文本中(从现在起'数据').这是一个很长的文字.我想循环文本并获得每个日期出现在文本中的次数,然后我打印出更多出现的5个日期.
我现在拥有的是:
def dates(data, dates1):
lines = data.split("\n")
dict_days = {}
for day in dates1:
count = 0
for line in lines:
if day in line:
count += 1
dict_days[day] = count
newA = heapq.nlargest(5, dict_days, key=dict_days.get)
print(newA)
Run Code Online (Sandbox Code Playgroud)
我在行中分割tex,创建一个dict,对于列表中的每个日期,它在每一行中查找它,如果它发现它将count加1.
这个工作正常,但是这个方法花了很多时间.
所以我要问的是,如果有人知道一种更有效的方法来做同样的事情
任何帮助将非常感激
编辑
我会尝试每一个答案并让你知道,提前谢谢
循环一次,提取任何日期,检查日期是否在集合中,如果是这样,使用Counter dict 计数增加计数,在结束时调用Counter.most_common以获得5个最常见的日期:
dates1 = {'21/5/2015', '4/4/2015', '15/6/2015', '30/1/2015', '19/3/2015', '25/2/2015', '25/5/2015', '8/2/2015', '6/6/2015', '15/3/2015', '15/1/2015', '30/5/2015'}
from collections import Counter
import re
def dates(data, dates1):
lines = data.split("\n")
dict_days = Counter()
r = re.compile("\d+/\d+/\d+")
for line in lines:
match = r.search(line)
if match:
dte = match.group()
if dte in dates1:
dict_days[dte] += 1
return dict_days.most_common(5)
Run Code Online (Sandbox Code Playgroud)
这会对行列表进行一次传递,而不是对date1中的每个日期进行一次传递.
对于100k行,日期字符串位于包含200多个字符的字符串末尾:
In [9]: from random import choice
In [10]: dates1 = {'21/5/2015', '4/4/2015', '15/6/2015', '30/1/2015', '19/3/2015', '25/2/2015', '25/5/2015', '8/2/2015', '6/6/2015', '15/3/2015', '15/1/2015', '30/5/2015'}
In [11]: dtes = list(dates1)
In [12]: s = "the same dates appear in a text ('data' from now on). It's a pretty long text. I want to loop over the text and get the number of times each date appear in the text, then i print the 5 dates with more occurances. "
In [13]: data = "\n".join([s+ choice(dtes) for _ in range(100000)])
In [14]: timeit dates(data,dates1)
1 loops, best of 3: 662 ms per loop
Run Code Online (Sandbox Code Playgroud)
如果每行可以显示多个日期,则可以使用findall:
def dates(data, dates1):
lines = data.split("\n")
r = re.compile("\d+/\d+/\d+")
dict_days = Counter(dt for line in lines
for dt in r.findall(line) if dt in dates1)
return dict_days.most_common(5)
Run Code Online (Sandbox Code Playgroud)
如果数据实际上不是像对象这样的文件并且是单个字符串,那么只需搜索字符串本身:
def dates(data, dates1):
r = re.compile("\d+/\d+/\d+")
dict_days = Counter((dt for dt in r.findall(data) if dt in dates1))
return dict_days.most_common(5)
Run Code Online (Sandbox Code Playgroud)
编译测试数据上的日期似乎是最快的方法,拆分每个子字符串非常接近搜索实现:
def dates_split(data, dates1):
lines = data.split("\n")
dict_days = Counter(dt for line in lines
for dt in line.split() if dt in dates1)
return dict_days.most_common(5)
def dates_comp_date1(data, dates1):
lines = data.split("\n")
r = re.compile("|".join(dates1))
dict_days = Counter(dt for line in lines for dt in r.findall(line))
return dict_days.most_common(5)
Run Code Online (Sandbox Code Playgroud)
使用上述功能:
In [63]: timeit dates(data, dates1)
1 loops, best of 3: 640 ms per loop
In [64]: timeit dates_split(data, dates1)
1 loops, best of 3: 535 ms per loop
In [65]: timeit dates_comp_date1(data, dates1)
1 loops, best of 3: 368 ms per loop
Run Code Online (Sandbox Code Playgroud)