Spi*_*uce 76 python dataframe pandas
我希望将包含列表的pandas单元格转换为每个值的行.
所以,拿这个:
如果我想解压并堆叠'nearest_neighbors"列中的值,以便每个值都是每个'对手'索引中的一行,我最好怎么做呢?是否有适合像这样的操作的pandas方法这个?我只是不知道.
先谢谢你,伙计们.
Ale*_*der 49
在下面的代码中,我首先重置索引以使行迭代更容易.
我创建了一个列表列表,其中外部列表的每个元素都是目标DataFrame的一行,内部列表的每个元素都是其中一列.此嵌套列表最终将连接在一起以创建所需的DataFrame.
我使用lambda的共同作用下与列表进行迭代,以创建一排的每个元素nearest_neighbors有关配对name和opponent.
最后,我从此列表中创建一个新的DataFrame(使用原始列名并将索引设置回name和opponent).
df = (pd.DataFrame({'name': ['A.J. Price'] * 3,
'opponent': ['76ers', 'blazers', 'bobcats'],
'nearest_neighbors': [['Zach LaVine', 'Jeremy Lin', 'Nate Robinson', 'Isaia']] * 3})
.set_index(['name', 'opponent']))
>>> df
nearest_neighbors
name opponent
A.J. Price 76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
bobcats [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
df.reset_index(inplace=True)
rows = []
_ = df.apply(lambda row: [rows.append([row['name'], row['opponent'], nn])
for nn in row.nearest_neighbors], axis=1)
df_new = pd.DataFrame(rows, columns=df.columns).set_index(['name', 'opponent'])
>>> df_new
nearest_neighbors
name opponent
A.J. Price 76ers Zach LaVine
76ers Jeremy Lin
76ers Nate Robinson
76ers Isaia
blazers Zach LaVine
blazers Jeremy Lin
blazers Nate Robinson
blazers Isaia
bobcats Zach LaVine
bobcats Jeremy Lin
bobcats Nate Robinson
bobcats Isaia
Run Code Online (Sandbox Code Playgroud)
编辑2017年6月
另一种方法如下:
>>> (pd.melt(df.nearest_neighbors.apply(pd.Series).reset_index(),
id_vars=['name', 'opponent'],
value_name='nearest_neighbors')
.set_index(['name', 'opponent'])
.drop('variable', axis=1)
.dropna()
.sort_index()
)
Run Code Online (Sandbox Code Playgroud)
Zer*_*ero 33
使用apply(pd.Series)和stack,然后reset_index和to_frame
In [1803]: (df.nearest_neighbors.apply(pd.Series)
.stack()
.reset_index(level=2, drop=True)
.to_frame('nearest_neighbors'))
Out[1803]:
nearest_neighbors
name opponent
A.J. Price 76ers Zach LaVine
76ers Jeremy Lin
76ers Nate Robinson
76ers Isaia
blazers Zach LaVine
blazers Jeremy Lin
blazers Nate Robinson
blazers Isaia
bobcats Zach LaVine
bobcats Jeremy Lin
bobcats Nate Robinson
bobcats Isaia
Run Code Online (Sandbox Code Playgroud)
细节
In [1804]: df
Out[1804]:
nearest_neighbors
name opponent
A.J. Price 76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
bobcats [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
Run Code Online (Sandbox Code Playgroud)
max*_*moo 15
我认为这是一个非常好的问题,在你会使用的Hive中EXPLODE,我认为有一种情况可以说Pandas默认情况下应该包含这个功能.我可能会使用嵌套的生成器理解来爆炸列表列,如下所示:
pd.DataFrame({
"name": i[0],
"opponent": i[1],
"nearest_neighbor": neighbour
}
for i, row in df.iterrows() for neighbour in row.nearest_neighbors
).set_index(["name", "opponent"])
Run Code Online (Sandbox Code Playgroud)
Ole*_*leg 11
到目前为止,我发现的最快的方法是扩展DataFrame .iloc并分配平坦的目标列.
给出通常的输入(复制了一下):
df = (pd.DataFrame({'name': ['A.J. Price'] * 3,
'opponent': ['76ers', 'blazers', 'bobcats'],
'nearest_neighbors': [['Zach LaVine', 'Jeremy Lin', 'Nate Robinson', 'Isaia']] * 3})
.set_index(['name', 'opponent']))
df = pd.concat([df]*10)
df
Out[3]:
nearest_neighbors
name opponent
A.J. Price 76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
bobcats [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
...
Run Code Online (Sandbox Code Playgroud)
鉴于以下建议的替代方案:
col_target = 'nearest_neighbors'
def extend_iloc():
# Flatten columns of lists
col_flat = [item for sublist in df[col_target] for item in sublist]
# Row numbers to repeat
lens = df[col_target].apply(len)
vals = range(df.shape[0])
ilocations = np.repeat(vals, lens)
# Replicate rows and add flattened column of lists
cols = [i for i,c in enumerate(df.columns) if c != col_target]
new_df = df.iloc[ilocations, cols].copy()
new_df[col_target] = col_flat
return new_df
def melt():
return (pd.melt(df[col_target].apply(pd.Series).reset_index(),
id_vars=['name', 'opponent'],
value_name=col_target)
.set_index(['name', 'opponent'])
.drop('variable', axis=1)
.dropna()
.sort_index())
def stack_unstack():
return (df[col_target].apply(pd.Series)
.stack()
.reset_index(level=2, drop=True)
.to_frame(col_target))
Run Code Online (Sandbox Code Playgroud)
我发现这extend_iloc()是最快的:
%timeit extend_iloc()
3.11 ms ± 544 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit melt()
22.5 ms ± 1.25 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit stack_unstack()
11.5 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Run Code Online (Sandbox Code Playgroud)
joe*_*lom 10
通过添加
方法,在pandas 0.25中显着简化了爆炸式列表explode():
df = (pd.DataFrame({'name': ['A.J. Price'] * 3,
'opponent': ['76ers', 'blazers', 'bobcats'],
'nearest_neighbors': [['Zach LaVine', 'Jeremy Lin', 'Nate Robinson', 'Isaia']] * 3})
.set_index(['name', 'opponent']))
df.explode('nearest_neighbors')
Run Code Online (Sandbox Code Playgroud)
出:
nearest_neighbors
name opponent
A.J. Price 76ers Zach LaVine
76ers Jeremy Lin
76ers Nate Robinson
76ers Isaia
blazers Zach LaVine
blazers Jeremy Lin
blazers Nate Robinson
blazers Isaia
bobcats Zach LaVine
bobcats Jeremy Lin
bobcats Nate Robinson
bobcats Isaia
Run Code Online (Sandbox Code Playgroud)
适用的更好的替代解决方案(pd.Series):
df = pd.DataFrame({'listcol':[[1,2,3],[4,5,6]]})
# expand df.listcol into its own dataframe
tags = df['listcol'].apply(pd.Series)
# rename each variable is listcol
tags = tags.rename(columns = lambda x : 'listcol_' + str(x))
# join the tags dataframe back to the original dataframe
df = pd.concat([df[:], tags[:]], axis=1)
Run Code Online (Sandbox Code Playgroud)
小智 7
与Hive的EXPLODE功能类似:
import copy
def pandas_explode(df, column_to_explode):
"""
Similar to Hive's EXPLODE function, take a column with iterable elements, and flatten the iterable to one element
per observation in the output table
:param df: A dataframe to explod
:type df: pandas.DataFrame
:param column_to_explode:
:type column_to_explode: str
:return: An exploded data frame
:rtype: pandas.DataFrame
"""
# Create a list of new observations
new_observations = list()
# Iterate through existing observations
for row in df.to_dict(orient='records'):
# Take out the exploding iterable
explode_values = row[column_to_explode]
del row[column_to_explode]
# Create a new observation for every entry in the exploding iterable & add all of the other columns
for explode_value in explode_values:
# Deep copy existing observation
new_observation = copy.deepcopy(row)
# Add one (newly flattened) value from exploding iterable
new_observation[column_to_explode] = explode_value
# Add to the list of new observations
new_observations.append(new_observation)
# Create a DataFrame
return_df = pandas.DataFrame(new_observations)
# Return
return return_df
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
48906 次 |
| 最近记录: |