Jam*_*yle 5 graphing r machine-learning r-caret
我想为Caret包创建的模型绘制决策边界.理想情况下,我想从Caret的任何分类器模型的一般案例方法.但是,我目前正在使用kNN方法.我在下面的代码中使用了UCI的葡萄酒质量数据集,这是我现在正在使用的.
我发现这种方法适用于R中的通用kNN方法,但无法弄清楚如何将其映射到Caret - > https://stats.stackexchange.com/questions/21572/how-to-plot-decision-边界的-AK近邻分类器从元素O/21602#21602
library(caret)
set.seed(300)
wine.r <- read.csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')
wine.w <- read.csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv', sep=';')
wine.r$style <- "red"
wine.w$style <- "white"
wine <- rbind(wine.r, wine.w)
wine$style <- as.factor(wine$style)
formula <- as.formula(quality ~ .)
dummies <- dummyVars(formula, data = wine)
dummied <- data.frame(predict(dummies, newdata = wine))
dummied$quality <- wine$quality
wine <- dummied
numCols <- !colnames(wine) %in% c('quality', 'style.red', 'style.white')
low <- wine$quality <= 6
high <- wine$quality > 6
wine$quality[low] = "low"
wine$quality[high] = "high"
wine$quality <- as.factor(wine$quality)
indxTrain <- createDataPartition(y = wine[, names(wine) == "quality"], p = 0.7, list = F)
train <- wine[indxTrain,]
test <- wine[-indxTrain,]
corrMat <- cor(train[, numCols])
correlated <- findCorrelation(corrMat, cutoff = 0.6)
ctrl <- trainControl(
method="repeatedcv",
repeats=5,
number=10,
classProbs = T
)
t1 <- train[, -correlated]
grid <- expand.grid(.k = c(1:20))
knnModel <- train(formula,
data = t1,
method = 'knn',
trControl = ctrl,
tuneGrid = grid,
preProcess = 'range'
)
t2 <- test[, -correlated]
knnPred <- predict(knnModel, newdata = t2)
# How do I render the decision boundary?
Run Code Online (Sandbox Code Playgroud)
第一步是真正了解您链接的代码正在做什么!实际上,您可以生成这样的图形,而与KNN无关.
例如,我们只需要一些示例数据,我们只是"着色"数据的下象限.
步骤1
生成网格.基本上图形的工作方式是在每个坐标处创建一个点,以便我们知道它属于哪个组.在R中,这是expand.grid用来遍历所有可能的点.
x1 <- 1:200
x2 <- 50:250
cgrid <- expand.grid(x1=x1, x2=x2)
# our "prediction" colours the bottom left quadrant
cgrid$prob <- 1
cgrid[cgrid$x1 < 100 & cgrid$x2 < 170, c("prob")] <- 0
Run Code Online (Sandbox Code Playgroud)
如果这是knn,那将是prob对该特定点的预测.
第2步
现在绘制它是相对简单的.您需要符合该contour功能,因此首先要创建一个包含概率的矩阵.
matrix_val <- matrix(cgrid$prob,
length(x1),
length(x2))
Run Code Online (Sandbox Code Playgroud)
第3步
然后你可以像链接那样继续:
contour(x1, x2, matrix_val, levels=0.5, labels="", xlab="", ylab="", main=
"Some Picture", lwd=2, axes=FALSE)
gd <- expand.grid(x=x1, y=x2)
points(gd, pch=".", cex=1.2, col=ifelse(prob==1, "coral", "cornflowerblue"))
box()
Run Code Online (Sandbox Code Playgroud)
输出:
那么回到你的特定例子.我将使用虹膜,因为您的数据看起来不是很有趣,但同样的原则也适用.要创建网格,您需要选择xy轴并保留其他所有内容!
knnModel <- train(Species ~.,
data = iris,
method = 'knn')
lgrid <- expand.grid(Petal.Length=seq(1, 5, by=0.1),
Petal.Width=seq(0.1, 1.8, by=0.1),
Sepal.Length = 5.4,
Sepal.Width=3.1)
Run Code Online (Sandbox Code Playgroud)
接下来,只需使用上面所做的预测功能.
knnPredGrid <- predict(knnModel, newdata=lgrid)
knnPredGrid = as.numeric(knnPredGrid) # 1 2 3
Run Code Online (Sandbox Code Playgroud)
然后构建图:
pl = seq(1, 5, by=0.1)
pw = seq(0.1, 1.8, by=0.1)
probs <- matrix(knnPredGrid, length(pl),
length(pw))
contour(pl, pw, probs, labels="", xlab="", ylab="", main=
"X-nearest neighbour", axes=FALSE)
gd <- expand.grid(x=pl, y=pw)
points(gd, pch=".", cex=5, col=probs)
box()
Run Code Online (Sandbox Code Playgroud)
这应该产生这样的输出:
要从模型中添加测试/训练结果,您可以按照我的方式进行操作.唯一的区别是您需要添加预测点(这与用于生成边界的网格不同.
library(caret)
data(iris)
indxTrain <- createDataPartition(y = iris[, names(iris) == "Species"], p = 0.7, list = F)
train <- iris[indxTrain,]
test <- iris[-indxTrain,]
knnModel <- train(Species ~.,
data = train,
method = 'knn')
pl = seq(min(test$Petal.Length), max(test$Petal.Length), by=0.1)
pw = seq(min(test$Petal.Width), max(test$Petal.Width), by=0.1)
# generates the boundaries for your graph
lgrid <- expand.grid(Petal.Length=pl,
Petal.Width=pw,
Sepal.Length = 5.4,
Sepal.Width=3.1)
knnPredGrid <- predict(knnModel, newdata=lgrid)
knnPredGrid = as.numeric(knnPredGrid)
# get the points from the test data...
testPred <- predict(knnModel, newdata=test)
testPred <- as.numeric(testPred)
# this gets the points for the testPred...
test$Pred <- testPred
probs <- matrix(knnPredGrid, length(pl), length(pw))
contour(pl, pw, probs, labels="", xlab="", ylab="", main="X-Nearest Neighbor", axes=F)
gd <- expand.grid(x=pl, y=pw)
points(gd, pch=".", cex=5, col=probs)
# add the test points to the graph
points(test$Petal.Length, test$Petal.Width, col=test$Pred, cex=2)
box()
Run Code Online (Sandbox Code Playgroud)
输出:
或者,您可以使用ggplot更简单的图形来执行:
ggplot(data=lgrid) + stat_contour(aes(x=Petal.Length, y=Petal.Width, z=knnPredGrid),
bins=2) +
geom_point(aes(x=Petal.Length, y=Petal.Width, colour=as.factor(knnPredGrid))) +
geom_point(data=test, aes(x=test$Petal.Length, y=test$Petal.Width, colour=as.factor(test$Pred)),
size=5, alpha=0.5, shape=1)+
theme_bw()
Run Code Online (Sandbox Code Playgroud)
输出:
| 归档时间: |
|
| 查看次数: |
3110 次 |
| 最近记录: |