从大量.txt文件及其频率生成Ngrams(Unigrams,Bigrams等)

Ara*_*ash 18 python nltk

我需要在NLTK中编写一个程序,将一个语料库(大量的txt文件)分成unigrams,bigrams,trigrams,fourgrams和fivegrams.我已经编写了代码将我的文件输入到程序中.

输入是用英文写的300 .txt文件,我希望以Ngrams的形式输出,特别是频率计数.

我知道NLTK有Bigram和Trigram模块:http://www.nltk.org/_modules/nltk/model/ngram.html

但我不是那么先进,他们进入我的计划.

输入:txt文件不是单句

输出示例:

Bigram [('Hi', 'How'), ('How', 'are'), ('are', 'you'), ('you', '?'), ('?', 'i'), ('i', 'am'), ('am', 'fine'), ('fine', 'and'), ('and', 'you')] 

Trigram: [('Hi', 'How', 'are'), ('How', 'are', 'you'), ('are', 'you', '?'), ('you', '?', 'i'), ('?', 'i', 'am'), ('i', 'am', 'fine'), ('am', 'fine', 'and'), ('fine', 'and', 'you')]
Run Code Online (Sandbox Code Playgroud)

我的代码到目前为止:

from nltk.corpus import PlaintextCorpusReader
corpus = 'C:/Users/jack3/My folder'
files = PlaintextCorpusReader(corpus, '.*')
ngrams=2

def generate(file, ngrams):
    for gram in range(0, ngrams):
    print((file[0:-4]+"_"+str(ngrams)+"_grams.txt").replace("/","_"))


for file in files.fileids():
generate(file, ngrams)
Run Code Online (Sandbox Code Playgroud)

有什么帮助接下来应该做什么?

hel*_*err 26

只是用ntlk.ngrams.

import nltk
from nltk import word_tokenize
from nltk.util import ngrams
from collections import Counter

text = "I need to write a program in NLTK that breaks a corpus (a large collection of \
txt files) into unigrams, bigrams, trigrams, fourgrams and fivegrams.\ 
I need to write a program in NLTK that breaks a corpus"
token = nltk.word_tokenize(text)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
fourgrams = ngrams(token,4)
fivegrams = ngrams(token,5)

print Counter(bigrams)

Counter({('program', 'in'): 2, ('NLTK', 'that'): 2, ('that', 'breaks'): 2,
 ('write', 'a'): 2, ('breaks', 'a'): 2, ('to', 'write'): 2, ('I', 'need'): 2,
 ('a', 'corpus'): 2, ('need', 'to'): 2, ('a', 'program'): 2, ('in', 'NLTK'): 2,
 ('and', 'fivegrams'): 1, ('corpus', '('): 1, ('txt', 'files'): 1, ('unigrams', 
','): 1, (',', 'trigrams'): 1, ('into', 'unigrams'): 1, ('trigrams', ','): 1,
 (',', 'bigrams'): 1, ('large', 'collection'): 1, ('bigrams', ','): 1, ('of',
 'txt'): 1, (')', 'into'): 1, ('fourgrams', 'and'): 1, ('fivegrams', '.'): 1,
 ('(', 'a'): 1, (',', 'fourgrams'): 1, ('a', 'large'): 1, ('.', 'I'): 1, 
('collection', 'of'): 1, ('files', ')'): 1})
Run Code Online (Sandbox Code Playgroud)

更新(使用纯python):

import os

corpus = []
path = '.'
for i in os.walk(path).next()[2]:
    if i.endswith('.txt'):
        f = open(os.path.join(path,i))
        corpus.append(f.read())
frequencies = Counter([])
for text in corpus:
    token = nltk.word_tokenize(text)
    bigrams = ngrams(token, 2)
    frequencies += Counter(bigrams)
Run Code Online (Sandbox Code Playgroud)

  • 如果你想查看`ngrams`函数返回的内容,你需要将它发送到`list`函数,例如`list(ngrams(token,2))`.但上面的代码应该可以正常工作,只需插入文件的路径即可. (3认同)
  • 那是因为 `ngram` 函数返回一个生成器,你需要在它上面调用一个 `list` 函数来实际提取内容。 (2认同)

Yan*_*ois 5

如果效率是一个问题,并且您必须构建多个不同的n-gram,但是您想使用纯python,则可以这样做:

from itertools import chain

def n_grams(seq, n=1):
    """Returns an iterator over the n-grams given a list_tokens"""
    shift_token = lambda i: (el for j,el in enumerate(seq) if j>=i)
    shifted_tokens = (shift_token(i) for i in range(n))
    tuple_ngrams = zip(*shifted_tokens)
    return tuple_ngrams # if join in generator : (" ".join(i) for i in tuple_ngrams)

def range_ngrams(list_tokens, ngram_range=(1,2)):
    """Returns an itirator over all n-grams for n in range(ngram_range) given a list_tokens."""
    return chain(*(n_grams(list_tokens, i) for i in range(*ngram_range)))
Run Code Online (Sandbox Code Playgroud)

用法:

>>> input_list = input_list = 'test the ngrams generator'.split()
>>> list(range_ngrams(input_list, ngram_range=(1,3)))
[('test',), ('the',), ('ngrams',), ('generator',), ('test', 'the'), ('the', 'ngrams'), ('ngrams', 'generator'), ('test', 'the', 'ngrams'), ('the', 'ngrams', 'generator')]
Run Code Online (Sandbox Code Playgroud)

〜与NLTK相同的速度:

import nltk
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=5)
# 7.02 ms ± 79 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
n_grams(input_list,n=5)
# 7.01 ms ± 103 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=1)
nltk.ngrams(input_list,n=2)
nltk.ngrams(input_list,n=3)
nltk.ngrams(input_list,n=4)
nltk.ngrams(input_list,n=5)
# 7.32 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
range_ngrams(input_list, ngram_range=(1,6))
# 7.13 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Run Code Online (Sandbox Code Playgroud)

重新发布我以前的答案