定位局部最大值的算法

Fog*_*ird 18 language-agnostic algorithm math function max

我的数据总是看起来像这样:

alt text http://michaelfogleman.com/static/images/chart.png

我需要一个算法来定位三个峰值.

x轴实际上是摄像机位置,y轴是该位置处的图像焦点/对比度的度量.有三个不同距离的特征可以聚焦,我需要确定这三个点的x值.

中间的驼峰总是有点难以挑选出来,即使对于人来说也是如此.

我有一个主要工作的自制算法,但我想知道是否有一种标准方法可以从一个可能有一点噪音的函数中获取局部最大值.然而,峰值很容易克服噪音.

此外,作为相机数据,不需要扫描全范围的算法可能是有用的.

编辑:发布我最终使用的Python代码.它使用我的原始代码,在给定搜索阈值的情况下找到最大值,并进行二进制搜索以找到导致所需最大数量的阈值.

编辑:以下代码中包含的示例数据.新代码是O(n)而不是O(n ^ 2).

def find_n_maxima(data, count):
    low = 0
    high = max(data) - min(data)
    for iteration in xrange(100): # max iterations
        mid = low + (high - low) / 2.0
        maxima = find_maxima(data, mid)
        if len(maxima) == count:
            return maxima
        elif len(maxima) < count: # threshold too high
            high = mid
        else: # threshold too low
            low = mid
    return None # failed

def find_maxima(data, threshold):
    def search(data, threshold, index, forward):
        max_index = index
        max_value = data[index]
        if forward:
            path = xrange(index + 1, len(data))
        else:
            path = xrange(index - 1, -1, -1)
        for i in path:
            if data[i] > max_value:
                max_index = i
                max_value = data[i]
            elif max_value - data[i] > threshold:
                break
        return max_index, i
    # forward pass
    forward = set()
    index = 0
    while index < len(data) - 1:
        maximum, index = search(data, threshold, index, True)
        forward.add(maximum)
        index += 1
    # reverse pass
    reverse = set()
    index = len(data) - 1
    while index > 0:
        maximum, index = search(data, threshold, index, False)
        reverse.add(maximum)
        index -= 1
    return sorted(forward & reverse)

data = [
    1263.900, 1271.968, 1276.151, 1282.254, 1287.156, 1296.513,
    1298.799, 1304.725, 1309.996, 1314.484, 1321.759, 1323.988,
    1331.923, 1336.100, 1340.007, 1340.548, 1343.124, 1353.717,
    1359.175, 1364.638, 1364.548, 1357.525, 1362.012, 1367.190,
    1367.852, 1376.275, 1374.726, 1374.260, 1392.284, 1382.035,
    1399.418, 1401.785, 1400.353, 1418.418, 1420.401, 1423.711,
    1425.214, 1436.231, 1431.356, 1435.665, 1445.239, 1438.701,
    1441.988, 1448.930, 1455.066, 1455.047, 1456.652, 1456.771,
    1459.191, 1473.207, 1465.788, 1488.785, 1491.422, 1492.827,
    1498.112, 1498.855, 1505.426, 1514.587, 1512.174, 1525.244,
    1532.235, 1543.360, 1543.985, 1548.323, 1552.478, 1576.477,
    1589.333, 1610.769, 1623.852, 1634.618, 1662.585, 1704.127,
    1758.718, 1807.490, 1852.097, 1969.540, 2243.820, 2354.224,
    2881.420, 2818.216, 2552.177, 2355.270, 2033.465, 1965.328,
    1824.853, 1831.997, 1779.384, 1764.789, 1704.507, 1683.615,
    1652.712, 1646.422, 1620.593, 1620.235, 1613.024, 1607.675,
    1604.015, 1574.567, 1587.718, 1584.822, 1588.432, 1593.377,
    1590.533, 1601.445, 1667.327, 1739.034, 1915.442, 2128.835,
    2147.193, 1970.836, 1755.509, 1653.258, 1613.284, 1558.576,
    1552.720, 1541.606, 1516.091, 1503.747, 1488.797, 1492.021,
    1466.720, 1457.120, 1462.485, 1451.347, 1453.224, 1440.477,
    1438.634, 1444.571, 1428.962, 1431.486, 1421.721, 1421.367,
    1403.461, 1415.482, 1405.318, 1399.041, 1399.306, 1390.486,
    1396.746, 1386.178, 1376.941, 1369.880, 1359.294, 1358.123,
    1353.398, 1345.121, 1338.808, 1330.982, 1324.264, 1322.147,
    1321.098, 1313.729, 1310.168, 1304.218, 1293.445, 1285.296,
    1281.882, 1280.444, 1274.795, 1271.765, 1266.857, 1260.161,
    1254.380, 1247.886, 1250.585, 1246.901, 1245.061, 1238.658,
    1235.497, 1231.393, 1226.241, 1223.136, 1218.232, 1219.658,
    1222.149, 1216.385, 1214.313, 1211.167, 1208.203, 1206.178,
    1206.139, 1202.020, 1205.854, 1206.720, 1204.005, 1205.308,
    1199.405, 1198.023, 1196.419, 1194.532, 1194.543, 1193.482,
    1197.279, 1196.998, 1194.489, 1189.537, 1188.338, 1184.860,
    1184.633, 1184.930, 1182.631, 1187.617, 1179.873, 1171.960,
    1170.831, 1167.442, 1177.138, 1166.485, 1164.465, 1161.374,
    1167.185, 1174.334, 1186.339, 1202.136, 1234.999, 1283.328,
    1347.111, 1679.050, 1927.083, 1860.902, 1602.791, 1350.454,
    1274.236, 1207.727, 1169.078, 1138.025, 1117.319, 1109.169,
    1080.018, 1073.837, 1059.876, 1050.209, 1050.859, 1035.003,
    1029.214, 1024.602, 1017.932, 1006.911, 1010.722, 1005.582,
    1000.332, 998.0721, 992.7311, 992.6507, 981.0430, 969.9936,
    972.8696, 967.9463, 970.1519, 957.1309, 959.6917, 958.0536,
    954.6357, 954.9951, 947.8299, 953.3991, 949.2725, 948.9012,
    939.8549, 940.1641, 942.9881, 938.4526, 937.9550, 929.6279,
    935.5402, 921.5773, 933.6365, 918.7065, 922.5849, 939.6088,
    911.3251, 923.7205, 924.8227, 911.3192, 936.7066, 915.2046,
    919.0274, 915.0533, 910.9783, 913.6773, 916.6287, 907.9267,
    908.0421, 908.7398, 911.8401, 914.5696, 912.0115, 919.4418,
    917.0436, 920.5495, 917.6138, 907.5037, 908.5145, 919.5846,
    917.6047, 926.8447, 910.6347, 912.8305, 907.7085, 911.6889,
]

for n in xrange(1, 6):
    print 'Looking for %d maxima:' % n
    indexes = find_n_maxima(data, n)
    print indexes
    print ', '.join(str(data[i]) for i in indexes)
    print
Run Code Online (Sandbox Code Playgroud)

输出:

Looking for 1 maxima:
[78]
2881.42

Looking for 2 maxima:
[78, 218]
2881.42, 1927.083

Looking for 3 maxima:
[78, 108, 218]
2881.42, 2147.193, 1927.083

Looking for 4 maxima:
[78, 108, 218, 274]
2881.42, 2147.193, 1927.083, 936.7066

Looking for 5 maxima:
[78, 108, 218, 269, 274]
2881.42, 2147.193, 1927.083, 939.6088, 936.7066
Run Code Online (Sandbox Code Playgroud)

btr*_*eat 9

局部最大值可以是任何x点,其y值高于其左右邻居.为了消除噪声,您可以设置某种容差阈值(例如,x点的y值必须高于其邻居的n值).

为避免扫描每个点,您可以使用相同的方法,但一次5或10个点,以粗略地了解最大值的位置.然后返回这些区域进行更详细的扫描.

  • @FogleBird您可以通过遍历数据一次并计算相邻y值之间差异的均值/标准差来找到该阈值; 让你的门槛成为其中的一部分. (2认同)
  • '局部最大值将是任何x点,其y值高于其左右邻居'不一定这么简单,对吧?等值的存在将打破这一点.如果您的数据点是1,2,3,50,3,3,10,10,3,则10s表示局部最大值,但它们都不高于左右邻居. (2认同)

Mat*_*ell 9

难道你不能沿着图表移动,定期计算导数,如果它从正变为负,你发现了一个峰值?

  • 如果发生这种情况,噪音就会产生局部最大值.平均或滤除噪声是决定哪个最大值足够"重要"的一种方法.但是,这里没有必要计算导数.只需将点的值与其邻居进行比较即可. (4认同)