alv*_*vas 8 python nlp list text-parsing text-chunking
给出一个输入句子,它有BIO块标签:
[('什么','B-NP'),('是','B-VP'),(''','B-NP'),(''airspeed','I-NP'),( 'of','B-PP'),('an','B-NP'),('unladen','I-NP'),('swallow','I-NP'),('? ','O')]
我需要提取出相关的短语,例如,如果我想提取'NP',我需要提取包含B-NP和的元组的片段I-NP.
[OUT]:
[('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
Run Code Online (Sandbox Code Playgroud)
(注意:提取元组中的数字代表令牌索引.)
我尝试使用以下代码解压缩它:
def extract_chunks(tagged_sent, chunk_type):
current_chunk = []
current_chunk_position = []
for idx, word_pos in enumerate(tagged_sent):
word, pos = word_pos
if '-'+chunk_type in pos: # Append the word to the current_chunk.
current_chunk.append((word))
current_chunk_position.append((idx))
else:
if current_chunk: # Flush the full chunk when out of an NP.
_chunk_str = ' '.join(current_chunk)
_chunk_pos_str = '-'.join(map(str, current_chunk_position))
yield _chunk_str, _chunk_pos_str
current_chunk = []
current_chunk_position = []
if current_chunk: # Flush the last chunk.
yield ' '.join(current_chunk), '-'.join(current_chunk_position)
tagged_sent = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
Run Code Online (Sandbox Code Playgroud)
但是当我有相同类型的相邻块时:
tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
Run Code Online (Sandbox Code Playgroud)
它输出这个:
[('The Mitsubishi Electric Company Managing Director', '0-1-2-3-4-5'), ('ramen', '7')]
Run Code Online (Sandbox Code Playgroud)
而不是期望的:
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
Run Code Online (Sandbox Code Playgroud)
如何从上面的代码中解决这个问题?
除了从上面的代码完成之外,是否有更好的解决方案来提取特定的所需块chunk_type?
def extract_chunks(tagged_sent, chunk_type):
grp1, grp2, chunk_type = [], [], "-" + chunk_type
for ind, (s, tp) in enumerate(tagged_sent):
if tp.endswith(chunk_type):
if not tp.startswith("B"):
grp2.append(str(ind))
grp1.append(s)
else:
if grp1:
yield " ".join(grp1), "-".join(grp2)
grp1, grp2 = [s], [str(ind)]
yield " ".join(grp1), "-".join(grp2)
Run Code Online (Sandbox Code Playgroud)
输出:
In [2]: l = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'),
...: ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
In [3]: list(extract_chunks(l, "NP"))
Out[3]:
[('The Mitsubishi Electric Company', '0-1-2-3'),
('Managing Director', '4-5'),
('ramen', '7')]
In [4]: l = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
In [5]: list(extract_chunks(l, "NP"))
Out[5]: [('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
997 次 |
| 最近记录: |