Nik*_*iko 19 python nltk apache-spark pyspark apache-spark-ml
我是Spark SQL DataFrames和ML的新手(PySpark).如何创建服装标记器,例如删除停用词并使用nltk中的某些库?我可以延长默认值吗?
谢谢.
zer*_*323 32
我可以延长默认值吗?
并不是的.Default Tokenizer
是一个子类pyspark.ml.wrapper.JavaTransformer
,与其他transfromers和estimators一样pyspark.ml.feature
,将实际处理委托给它的Scala对应物.既然你想使用Python,你应该pyspark.ml.pipeline.Transformer
直接扩展.
import nltk
from pyspark import keyword_only ## < 2.0 -> pyspark.ml.util.keyword_only
from pyspark.ml import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param, Params, TypeConverters
# Available in PySpark >= 2.3.0
from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, StringType
class NLTKWordPunctTokenizer(
Transformer, HasInputCol, HasOutputCol,
# Credits https://stackoverflow.com/a/52467470
# by https://stackoverflow.com/users/234944/benjamin-manns
DefaultParamsReadable, DefaultParamsWritable):
stopwords = Param(Params._dummy(), "stopwords", "stopwords",
typeConverter=TypeConverters.toListString)
@keyword_only
def __init__(self, inputCol=None, outputCol=None, stopwords=None):
super(NLTKWordPunctTokenizer, self).__init__()
self.stopwords = Param(self, "stopwords", "")
self._setDefault(stopwords=[])
kwargs = self._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, inputCol=None, outputCol=None, stopwords=None):
kwargs = self._input_kwargs
return self._set(**kwargs)
def setStopwords(self, value):
return self._set(stopwords=list(value))
def getStopwords(self):
return self.getOrDefault(self.stopwords)
# Required in Spark >= 3.0
def setInputCol(self, value):
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
# Required in Spark >= 3.0
def setOutputCol(self, value):
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
def _transform(self, dataset):
stopwords = set(self.getStopwords())
def f(s):
tokens = nltk.tokenize.wordpunct_tokenize(s)
return [t for t in tokens if t.lower() not in stopwords]
t = ArrayType(StringType())
out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
return dataset.withColumn(out_col, udf(f, t)(in_col))
Run Code Online (Sandbox Code Playgroud)
sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = NLTKWordPunctTokenizer(
inputCol="sentence", outputCol="words",
stopwords=nltk.corpus.stopwords.words('english'))
tokenizer.transform(sentenceDataFrame).show()
Run Code Online (Sandbox Code Playgroud)
对于自定义Python,Estimator
请参阅如何在PySpark mllib中滚动自定义估算器
⚠此答案取决于内部API,并与Spark 2.0.3,2.1.1,2.2.0或更高版本(SPARK-19348)兼容.有关与以前Spark版本兼容的代码,请参见修订版8.