Geg*_*naV 5 r statistical-test p-value kruskal-wallis
考虑一个Data具有多个因子和多个数值连续变量的数据集。这些变量中的一些,比方说slice_by_1(类别为“男性”、“女性”)和slice_by_2(类别为“悲伤”、“中性”、“快乐”)用于将数据“切片”为子集。对于每个子集,Kruskal-Wallis 测试都应该在变量length,上运行preasure,pulse每个变量都由另一个称为 的因子变量分组compare_by。R 中是否有一种快速方法来完成此任务并将计算出的 p 值放入矩阵?
我使用dplyr包来准备数据。
示例数据集:
library(dplyr)
set.seed(123)
Data <- tbl_df(
data.frame(
slice_by_1 = as.factor(rep(c("Male", "Female"), times = 120)),
slice_by_2 = as.factor(rep(c("Happy", "Neutral", "Sad"), each = 80)),
compare_by = as.factor(rep(c("blue", "green", "brown"), times = 80)),
length = c(sample(1:10, 120, replace=T), sample(5:12, 120, replace=T)),
pulse = runif(240, 60, 120),
preasure = c(rnorm(80,1,2),rnorm(80,1,2.1),rnorm(80,1,3))
)
) %>%
group_by(slice_by_1, slice_by_2)
Run Code Online (Sandbox Code Playgroud)
我们来看数据:
Source: local data frame [240 x 6]
Groups: slice_by_1, slice_by_2
slice_by_1 slice_by_2 compare_by length pulse preasure
1 Male Happy blue 10 69.23376 0.508694601
2 Female Happy green 1 68.57866 -1.155632020
3 Male Happy brown 8 112.72132 0.007031799
4 Female Happy blue 3 116.61283 0.383769524
5 Male Happy green 7 110.06851 -0.717791526
6 Female Happy brown 8 117.62481 2.938658488
7 Male Happy blue 9 105.59749 0.735831389
8 Female Happy green 2 83.44101 3.881268679
9 Male Happy brown 5 101.48334 0.025572561
10 Female Happy blue 10 62.87331 -0.715108893
.. ... ... ... ... ... ...
Run Code Online (Sandbox Code Playgroud)
所需输出的示例:
Data_subsets length preasure pulse
1 Male_Happy <p-value> <p-value> <p-value>
2 Female_Happy <p-value> <p-value> <p-value>
3 Male_Neutral <p-value> <p-value> <p-value>
4 Female_Neutral <p-value> <p-value> <p-value>
5 Male_Sad <p-value> <p-value> <p-value>
6 Female_Sad <p-value> <p-value> <p-value>
Run Code Online (Sandbox Code Playgroud)
我们可以使用Mapinsidedo执行多列操作kruskal.test,然后使用unitefromlibrary(tidyr)将“slice_by_1”和“slice_by_2”列连接到单个列“Data_subsets”。
library(dplyr)
library(tidyr)
nm1 <- names(Data)[4:6]
f1 <- function(x,y) kruskal.test(x~y)$p.value
Data %>%
do({data.frame(Map(f1, .[nm1], list(.$compare_by)))}) %>%
unite(Data_subsets, slice_by_1, slice_by_2, sep="_")
# Data_subsets length pulse preasure
#1 Female_Happy 0.4369918 0.8767561 0.1937327
#2 Female_Neutral 0.3750688 0.2858796 0.8588069
#3 Female_Sad 0.7958502 0.5801208 0.6274940
#4 Male_Happy 0.3099704 0.3796494 0.6929493
#5 Male_Neutral 0.4953853 0.2418708 0.2986860
#6 Male_Sad 0.7159970 0.5686672 0.8528201
Run Code Online (Sandbox Code Playgroud)
或者我们可以使用 来做到这一点data.table。我们将“data.frame”转换为“data.table”(setDT(Data)),通过“slice_by_1”和“slice_by_2”列创建分组变量(“Data_subsets”)paste,然后对数据集的列进行子集化并将其作为输入传递Map,执行并krusal.test提取p.value。
library(data.table)
setDT(Data)[, Map(f1, .SD[, nm1, with=FALSE], list(compare_by)) ,
by = .(Data_subsets= paste(slice_by_1, slice_by_2, sep='_'))]
# Data_subsets length pulse preasure
#1: Male_Happy 0.3099704 0.3796494 0.6929493
#2: Female_Happy 0.4369918 0.8767561 0.1937327
#3: Male_Neutral 0.4953853 0.2418708 0.2986860
#4: Female_Neutral 0.3750688 0.2858796 0.8588069
#5: Male_Sad 0.7159970 0.5686672 0.8528201
#6: Female_Sad 0.7958502 0.5801208 0.6274940
Run Code Online (Sandbox Code Playgroud)