bri*_*ore 21 c++ performance gcc x86-64 c++11
我最近发现使用placement new比执行16个赋值更快:
考虑以下代码段(c ++ 11):
class Matrix
{
public:
double data[16];
Matrix() : data{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }
{
};
void Identity1()
{
new (this) Matrix();
};
void Identity2()
{
data[0] = 1.0; data[1] = 0.0; data[2] = 0.0; data[3] = 0.0;
data[4] = 0.0; data[5] = 1.0; data[6] = 0.0; data[7] = 0.0;
data[8] = 0.0; data[9] = 0.0; data[10] = 1.0; data[11] = 0.0;
data[12] = 0.0; data[13] = 0.0; data[14] = 0.0; data[15] = 1.0;
};
};
Run Code Online (Sandbox Code Playgroud)
用法:
Matrix m;
//modify m.data
m.Identity1(); //~25 times faster
m.Identity2();
Run Code Online (Sandbox Code Playgroud)
在我的机器Identity1()上比第二个功能快约25倍.现在我很好奇为什么会有这么大的差异?
我还尝试了第三个:
void Identity3()
{
memset(data, 0, sizeof(double) * 16);
data[0] = 1.0;
data[5] = 1.0;
data[10] = 1.0;
data[15] = 1.0;
};
Run Code Online (Sandbox Code Playgroud)
但这甚至比Identity2()我想象的要慢.
我做了几个分析测试,看它是否是一个与分析相关的问题,所以有默认的'for loop'测试,但也有外部分析测试:
分析方法1 :(众所周知的循环测试)
struct timespec ts1;
struct timespec ts2;
clock_gettime(CLOCK_MONOTONIC, &ts1);
for (volatile int i = 0; i < 10000000; i++)
m.Identity(); //use 1 or 2 here
clock_gettime(CLOCK_MONOTONIC, &ts2);
int64_t start = (int64_t)ts1.tv_sec * 1000000000 + (int64_t)ts1.tv_nsec;
int64_t elapsed = ((int64_t)ts2.tv_sec * 1000000000 + (int64_t)ts2.tv_nsec) - start;
if (elapsed < 0)
elapsed += (int64_t)0x100000 * 1000000000;
printf("elapsed nanos: %ld\n", elapsed);
Run Code Online (Sandbox Code Playgroud)
方法2:
$ valgrind --tool=callgrind ./testcase
$ # for better overview:
$ python2 gprof2dot.py -f callgrind.out.22028 -e 0.0 -n 0.0 | dot -Tpng -o tree.png
Run Code Online (Sandbox Code Playgroud)
正如用户TC在评论中所述,这可能会有所帮助:
编译:
g++ --std=c++11 -O3 -g -pg -Wall
-pg不是问题.在不使用该标志的情况下,在测量方法1中获得相同的时间差.
Machine info (lscpu):
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz
Stepping: 9
CPU MHz: 2889.878
CPU max MHz: 3100.0000
CPU min MHz: 1200.0000
BogoMIPS: 4192.97
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K
NUMA node0 CPU(s): 0-7
Run Code Online (Sandbox Code Playgroud)
我敢打赌,如果您手动 memcopy 一个 const-expr 数组,您会获得相同的性能:
static constexpr double identity_data[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
void Identity3()
{
std::copy(std::begin(identity_data), std::end(identity_data), data);
}
Run Code Online (Sandbox Code Playgroud)