在takeSample上运行堆内存的Spark作业

npp*_*993 5 java cloud scala apache-spark

我有一个Apache spark集群,有一个主节点和三个工作节点.工作节点每个都有32个内核和124G内存.我还在HDFS中获得了大约6.5亿条文本记录的数据集.这个数据集是许多读入的序列化RDD,如下所示:

import org.apache.spark.mllib.linalg.{Vector, Vectors, SparseVector}
val vectors = sc.objectFile[(String, SparseVector)]("hdfs://mn:8020/data/*")
Run Code Online (Sandbox Code Playgroud)

我想提取一百万条记录的样本来做一些分析,所以我想我会尝试val sample = vectors.takeSample(false, 10000, 0).但是,最终失败并显示以下错误消息:

 15/08/25 09:48:27 ERROR Utils: Uncaught exception in thread task-result-getter-3
java.lang.OutOfMemoryError: Java heap space
        at org.apache.spark.scheduler.DirectTaskResult$$anonfun$readExternal$1.apply$mcV$sp(TaskResult.scala:64)
        at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1239)
        at org.apache.spark.scheduler.DirectTaskResult.readExternal(TaskResult.scala:61)
        at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
        at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
        at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
        at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
        at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:69)
        at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:89)
        at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:79)
        at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
        at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:51)
        at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1772)
        at org.apache.spark.scheduler.TaskResultGetter$$anon$2.run(TaskResultGetter.scala:50)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)
Exception in thread "task-result-getter-3" java.lang.OutOfMemoryError: Java heap space
        at org.apache.spark.scheduler.DirectTaskResult$$anonfun$readExternal$1.apply$mcV$sp(TaskResult.scala:64)
        at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1239)
        at org.apache.spark.scheduler.DirectTaskResult.readExternal(TaskResult.scala:61)
        at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
        at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
        at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
        at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
        at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:69)
        at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:89)
        at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$r
Run Code Online (Sandbox Code Playgroud)

我知道我的堆空间已经用完了(我觉得在驱动程序上?),这是有道理的.这样做hadoop fs -du -s /path/to/data,数据集在磁盘上占用2575千兆字节(但大小只有约850 GB).

所以,我的问题是,我该怎样做才能提取1000000条记录的样本(我后来计划将其序列化为磁盘)?我知道我可以takeSample()使用较小的样本大小并稍后聚合它们,但我认为我只是没有设置正确的配置或做错了什么,这阻止我按照我喜欢的方式这样做.

Dan*_*don 1

您可以通过增加分区数量、使每个分区变小来实现这一目的。检查您正在设置的执行器数量以及为每个执行器保留多少内存也很重要(您没有将此信息放在问题上)。

我发现本指南对于调整 Spark 非常有用。