Bas*_*ian 10 java artificial-intelligence gradient-descent
我最近在Coursera开始了AI-Class,我有一个与我实现梯度下降算法有关的问题.
这是我当前的实现(我实际上只是将数学表达式"翻译"为Java代码):
public class GradientDescent {
private static final double TOLERANCE = 1E-11;
private double theta0;
private double theta1;
public double getTheta0() {
return theta0;
}
public double getTheta1() {
return theta1;
}
public GradientDescent(double theta0, double theta1) {
this.theta0 = theta0;
this.theta1 = theta1;
}
public double getHypothesisResult(double x){
return theta0 + theta1*x;
}
private double getResult(double[][] trainingData, boolean enableFactor){
double result = 0;
for (int i = 0; i < trainingData.length; i++) {
result = (getHypothesisResult(trainingData[i][0]) - trainingData[i][1]);
if (enableFactor) result = result*trainingData[i][0];
}
return result;
}
public void train(double learningRate, double[][] trainingData){
int iteration = 0;
double delta0, delta1;
do{
iteration++;
System.out.println("SUBS: " + (learningRate*((double) 1/trainingData.length))*getResult(trainingData, false));
double temp0 = theta0 - learningRate*(((double) 1/trainingData.length)*getResult(trainingData, false));
double temp1 = theta1 - learningRate*(((double) 1/trainingData.length)*getResult(trainingData, true));
delta0 = theta0-temp0; delta1 = theta1-temp1;
theta0 = temp0; theta1 = temp1;
}while((Math.abs(delta0) + Math.abs(delta1)) > TOLERANCE);
System.out.println(iteration);
}
Run Code Online (Sandbox Code Playgroud)
}
代码工作得很好但只有当我选择一个非常小的alpha时,这里称为learningRate.如果它高于0.00001,则会发散.
您对如何优化实施或"Alpha-Issue"的解释以及可能的解决方案有什么建议吗?
更新:
这是主要包括一些示例输入:
private static final double[][] TDATA = {{200, 20000},{300, 41000},{900, 141000},{800, 41000},{400, 51000},{500, 61500}};
public static void main(String[] args) {
GradientDescent gd = new GradientDescent(0,0);
gd.train(0.00001, TDATA);
System.out.println("THETA0: " + gd.getTheta0() + " - THETA1: " + gd.getTheta1());
System.out.println("PREDICTION: " + gd.getHypothesisResult(300));
}
Run Code Online (Sandbox Code Playgroud)
梯度下降的数学表达式如下:
为了解决这个问题,需要使用以下公式对数据进行归一化:(Xi-mu)/s。Xi 是当前训练集值,mu 是当前列中值的平均值,s 是当前列中的最大值减去最小值。该公式将使训练数据大约在 -1 和 1 之间的范围内,从而允许选择更高的学习率和梯度下降以更快地收敛。但随后有必要对预测结果进行非规范化。
| 归档时间: |
|
| 查看次数: |
6654 次 |
| 最近记录: |