为什么我的 Python 脚本比它的 R 等价物慢得多?

Bra*_*roy 1 python regex r text-analysis bigdata

注意:这个问题涵盖了为什么脚本这么慢。但是,如果您更喜欢改进某些东西,可以查看我在 CodeReview 上的帖子,该帖子旨在提高性能

我正在处理一个处理纯文本文件 (.lst) 的项目。

文件名 ( fileName) 的名称很重要,因为我将从它们中提取node(例如abessijn)和component(例如 WR-PEA)到一个数据帧中。例子:

abessijn.WR-P-E-A.lst
A-bom.WR-P-E-A.lst
acroniem.WR-P-E-C.lst
acroniem.WR-P-E-G.lst
adapter.WR-P-E-A.lst
adapter.WR-P-E-C.lst
adapter.WR-P-E-G.lst
Run Code Online (Sandbox Code Playgroud)

每个文件由一行或多行组成。每行由一个句子(在<sentence>标签内)组成。示例(abessijn.WR-PEA.lst)

/home/nobackup/SONAR/COMPACT/WR-P-E-A/WR-P-E-A0000364.data.ids.xml:  <sentence>Vooral mijn abessijn ruikt heerlijk kruidig .. : ) )</sentence>
/home/nobackup/SONAR/COMPACT/WR-P-E-A/WR-P-E-A0000364.data.ids.xml:  <sentence>Mijn abessijn denkt daar heel anders over .. : ) ) Maar mijn kinderen richt ik ook niet af , zit niet in mijn bloed .</sentence>
Run Code Online (Sandbox Code Playgroud)

我从每一行中提取句子,对其进行一些小的修改,然后将其命名为sentence. 接下来是一个名为 的元素leftContext,它采用node(例如abessijn)和它来自的句子之间的分割的第一部分。最后,从leftContext我得到previousWord,它是nodein之前的词sentence,或者最右边的词in leftContext(有一些限制,例如选择用连字符组成的复合词)。例子:

ID | filename             | node | component | precedingWord      | leftContext                               |  sentence
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   aanpassingseenheid  Een aanpassingseenheid (                      Een aanpassingseenheid ( adapter ) , 
2    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   toestel             Het toestel (                                 Het toestel ( adapter ) draagt zorg voor de overbrenging van gegevens
3    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   de                  de aansluiting tussen de sensor en de         de aansluiting tussen de sensor en de adapter , 
4    airbag.WS-U-E-A.lst   airbag   WS-U-E-A   den                 ja voor den                                   ja voor den airbag op te pompen eh :p
5    airbag.WS-U-E-A.lst   airbag   WS-U-E-A   ne                  Dobby , als ze valt heeft ze dan wel al ne    Dobby , als ze valt heeft ze dan wel al ne airbag hee
Run Code Online (Sandbox Code Playgroud)

该数据框导出为 dataset.csv。

在那之后,我的项目的意图就出现了:我创建了一个考虑nodeprecedingWord考虑的频率表。从我定义的变量neuternon_neuter,例如(在 Python 中)

neuter = ["het", "Het"]
non_neuter = ["de","De"]
Run Code Online (Sandbox Code Playgroud)

和休息类别unspecified。当precedingWord是列表中的一项时,将其分配给变量。频率表输出示例:

node    |   neuter   | nonNeuter   | unspecified
-------------------------------------------------
A-bom       0          4             2
acroniem    3          0             2
act         3          2             1
Run Code Online (Sandbox Code Playgroud)

频率列表导出为frequencys.csv。


我从 R 开始,考虑到以后我会对频率进行一些统计分析。我当前的 R 脚本(也可用作paste):

# ---
# STEP 0: Preparations
  start_time <- Sys.time()
  ## 1. Set working directory in R
    setwd("")

  ## 2. Load required library/libraries
    library(dplyr)
    library(mclm)
    library(stringi)

  ## 3. Create directory where we'll save our dataset(s)
    dir.create("../R/dataset", showWarnings = FALSE)


# ---
# STEP 1: Loop through files, get data from the filename

    ## 1. Create first dataframe, based on filename of all files
    files <- list.files(pattern="*.lst", full.names=T, recursive=FALSE)
    d <- data.frame(fileName = unname(sapply(files, basename)), stringsAsFactors = FALSE)

    ## 2. Create additional columns (word & component) based on filename
    d$node <- sub("\\..+", "", d$fileName, perl=TRUE)
    d$node <- tolower(d$node)
    d$component <- gsub("^[^\\.]+\\.|\\.lst$", "", d$fileName, perl=TRUE)


# ---
# STEP 2: Loop through files again, but now also through its contents
# In other words: get the sentences

    ## 1. Create second set which is an rbind of multiple frames
    ## One two-column data.frame per file
    ## First column is fileName, second column is data from each file
    e <- do.call(rbind, lapply(files, function(x) {
        data.frame(fileName = x, sentence = readLines(x, encoding="UTF-8"), stringsAsFactors = FALSE)
    }))

    ## 2. Clean fileName
     e$fileName <- sub("^\\.\\/", "", e$fileName, perl=TRUE)

    ## 3. Get the sentence and clean
    e$sentence <- gsub(".*?<sentence>(.*?)</sentence>", "\\1", e$sentence, perl=TRUE)
    e$sentence <- tolower(e$sentence)
        # Remove floating space before/after punctuation
        e$sentence <- gsub("\\s(?:(?=[.,:;?!) ])|(?<=\\( ))", "\\1", e$sentence, perl=TRUE)
    # Add space after triple dots ...
      e$sentence <- gsub("\\.{3}(?=[^\\s])", "... ", e$sentence, perl=TRUE)

    # Transform HTML entities into characters
    # It is unfortunate that there's no easier way to do this
    # E.g. Python provides the HTML package which can unescape (decode) HTML
    # characters
        e$sentence <- gsub("&apos;", "'", e$sentence, perl=TRUE)
        e$sentence <- gsub("&amp;", "&", e$sentence, perl=TRUE)
      # Avoid R from wrongly interpreting ", so replace by single quotes
        e$sentence <- gsub("&quot;|\"", "'", e$sentence, perl=TRUE)

      # Get rid of some characters we can't use such as ³ and ¾
      e$sentence <- gsub("[^[:graph:]\\s]", "", e$sentence, perl=TRUE)


# ---
# STEP 3:
# Create final dataframe

  ## 1. Merge d and e by common column name fileName
    df <- merge(d, e, by="fileName", all=TRUE)

  ## 2. Make sure that only those sentences in which df$node is present in df$sentence are taken into account
    matchFunction <- function(x, y) any(x == y)
    matchedFrame <- with(df, mapply(matchFunction, node, stri_split_regex(sentence, "[ :?.,]")))
    df <- df[matchedFrame, ]

  ## 3. Create leftContext based on the split of the word and the sentence
    # Use paste0 to make sure we are looking for the node, not a compound
    # node can only be preceded by a space, but can be followed by punctuation as well
    contexts <- strsplit(df$sentence, paste0("(^| )", df$node, "( |[!\",.:;?})\\]])"), perl=TRUE)
    df$leftContext <- sapply(contexts, `[`, 1)

  ## 4. Get the word preceding the node
    df$precedingWord <- gsub("^.*\\b(?<!-)(\\w+(?:-\\w+)*)[^\\w]*$","\\1", df$leftContext, perl=TRUE)

  ## 5. Improve readability by sorting columns
    df <- df[c("fileName", "component", "precedingWord", "node", "leftContext", "sentence")]

  ## 6. Write dataset to dataset dir
    write.dataset(df,"../R/dataset/r-dataset.csv")


# ---
# STEP 4:
# Create dataset with frequencies

  ## 1. Define neuter and nonNeuter classes
    neuter <- c("het")
    non.neuter<- c("de")

  ## 2. Mutate df to fit into usable frame
    freq <- mutate(df, gender = ifelse(!df$precedingWord %in% c(neuter, non.neuter), "unspecified",
      ifelse(df$precedingWord %in% neuter, "neuter", "non_neuter")))

  ## 3. Transform into table, but still usable as data frame (i.e. matrix)
  ## Also add column name "node"
    freqTable <- table(freq$node, freq$gender) %>%
      as.data.frame.matrix %>%
      mutate(node = row.names(.))

  ## 4. Small adjustements
    freqTable <- freqTable[,c(4,1:3)]

  ## 5. Write dataset to dataset dir
    write.dataset(freqTable,"../R/dataset/r-frequencies.csv")


    diff <- Sys.time() - start_time # calculate difference
    print(diff) # print in nice format
Run Code Online (Sandbox Code Playgroud)

但是,由于我使用了一个大数据集(16,500 个文件,所有文件都包含多行),因此似乎需要很长时间。在我的系统上,整个过程大约需要一个小时半。我心想应该有一种语言可以更快地做到这一点,所以我去自学了一些 Python 并在这里问了很多关于 SO 的问题。

最后我想出了以下脚本(paste)。

import os, pandas as pd, numpy as np, regex as re

from glob import glob
from datetime import datetime
from html import unescape

start_time = datetime.now()

# Create empty dataframe with correct column names
columnNames = ["fileName", "component", "precedingWord", "node", "leftContext", "sentence" ]
df = pd.DataFrame(data=np.zeros((0,len(columnNames))), columns=columnNames)

# Create correct path where to fetch files
subdir = "rawdata"
path = os.path.abspath(os.path.join(os.getcwd(), os.pardir, subdir))

# "Cache" regex
# See http://stackoverflow.com/q/452104/1150683
p_filename = re.compile(r"[./\\]")

p_sentence = re.compile(r"<sentence>(.*?)</sentence>")
p_typography = re.compile(r" (?:(?=[.,:;?!) ])|(?<=\( ))")
p_non_graph = re.compile(r"[^\x21-\x7E\s]")
p_quote = re.compile(r"\"")
p_ellipsis = re.compile(r"\.{3}(?=[^ ])")

p_last_word = re.compile(r"^.*\b(?<!-)(\w+(?:-\w+)*)[^\w]*$", re.U)

# Loop files in folder
for file in glob(path+"\\*.lst"):
    with open(file, encoding="utf-8") as f:
        [n, c] = p_filename.split(file.lower())[-3:-1]
        fn = ".".join([n, c])
        for line in f:
            s = p_sentence.search(unescape(line)).group(1)
            s = s.lower()
            s = p_typography.sub("", s)
            s = p_non_graph.sub("", s)
            s = p_quote.sub("'", s)
            s = p_ellipsis.sub("... ", s)

            if n in re.split(r"[ :?.,]", s):
                lc = re.split(r"(^| )" + n + "( |[!\",.:;?})\]])", s)[0]

                pw = p_last_word.sub("\\1", lc)

                df = df.append([dict(fileName=fn, component=c, 
                                   precedingWord=pw, node=n, 
                                   leftContext=lc, sentence=s)])
            continue

# Reset indices
df.reset_index(drop=True, inplace=True)

# Export dataset
df.to_csv("dataset/py-dataset.csv", sep="\t", encoding="utf-8")

# Let's make a frequency list
# Create new dataframe

# Define neuter and non_neuter
neuter = ["het"]
non_neuter = ["de"]

# Create crosstab
df.loc[df.precedingWord.isin(neuter), "gender"] = "neuter"
df.loc[df.precedingWord.isin(non_neuter), "gender"] = "non_neuter"
df.loc[df.precedingWord.isin(neuter + non_neuter)==0, "gender"] = "rest"

freqDf = pd.crosstab(df.node, df.gender)

freqDf.to_csv("dataset/py-frequencies.csv", sep="\t", encoding="utf-8")

# How long has the script been running?
time_difference = datetime.now() - start_time
print("Time difference of", time_difference)
Run Code Online (Sandbox Code Playgroud)

在确保两个脚本的输出相同后,我想我应该对它们进行测试。

我在带有四核处理器和 8 GB 内存的 Windows 10 64 位上运行。对于 R,我使用 RGui 64 位 3.2.2,Python 在3.4.3 (Anaconda)版本上运行并在 Spyder 中执行。请注意,我在 32 位上运行 Python,因为我想在将来使用nltk 模块,并且他们不鼓励用户使用 64 位。

我发现 R 在大约 55 分钟内完成。但是 Python 已经连续运行了两个小时,我可以在变量资源管理器中看到它只在business.wr-p-p-g.lst(文件按字母顺序排序)。它是 waaaaayyyy 慢!

所以我所做的是制作一个测试用例,看看两个脚本在一个小得多的数据集上的表现。我拿了大约 100 个文件(而不是 16,500 个)并运行了脚本。同样,R 的速度要快得多。R 在大约 2 秒内完成,Python 在 17 秒内完成!

看到Python的目标是让一切更顺利,我很困惑。我读到 Python 很快(而 R 很慢),那么我哪里出错了?问题是什么?Python 在读取文件和行或执行正则表达式时是否更慢?或者 R 只是更好地处理数据帧而不能被熊猫打败?或者我的代码只是优化不当,Python 真的应该成为胜利者吗?

因此,我的问题是:为什么在这种情况下 Python 比 R 慢,如果可能的话,我们如何改进 Python 以使其发光?

愿意尝试任一脚本的每个人都可以下载我在这里使用的测试数据。请在下载文件时提醒我。

Eli*_*igo 5

你所做的最可怕的低效事情是DataFrame.append在循环中调用该方法,即

df = pandas.DataFrame(...)
for file in files:
    ...
    for line in file:
        ...
        df = df.append(...)
Run Code Online (Sandbox Code Playgroud)

NumPy 数据结构在设计时就考虑到了函数式编程,因此此操作并不意味着以迭代命令式方式使用,因为调用不会就地更改您的数据框,而是创建一个新的数据框,从而导致时间和内存复杂性的巨大增加。如果您真的想使用数据框,请在 a 中累积行list并将其传递给DataFrame构造函数,例如

pre_df = []
for file in files:
    ...
    for line in file:
        ...
        pre_df.append(processed_line)

df = pandas.DataFrame(pre_df, ...)
Run Code Online (Sandbox Code Playgroud)

这是最简单的方法,因为它会对您拥有的代码进行最少的更改。但是更好(并且计算上美观)的方法是弄清楚如何懒惰地生成数据集。这可以通过分束可以容易地实现工作流成离散的功能(在功能编程风格的意义上),并使用懒惰发生器表情和/或它们组合imapifilter高阶函数。然后你可以使用生成的生成器来构建你的数据框,例如

df = pandas.DataFrame.from_records(processed_lines_generator, columns=column_names, ...)
Run Code Online (Sandbox Code Playgroud)

至于在一次运行中读取多个文件,您可能需要阅读.

聚苯乙烯

如果您遇到性能问题,则应在尝试优化代码之前对其进行概要分析。