Ale*_*llo 20 python matrix inverse numba
我想在不使用numpy.linalg.inv的情况下反转矩阵.
原因是我使用Numba加速代码,但是不支持numpy.linalg.inv,所以我想知道我是否可以使用'经典'Python代码反转矩阵.
使用numpy.linalg.inv,示例代码如下所示:
import numpy as np
M = np.array([[1,0,0],[0,1,0],[0,0,1]])
Minv = np.linalg.inv(M)
Run Code Online (Sandbox Code Playgroud)
sta*_*her 40
这是一个更优雅和可扩展的解决方案,imo.它适用于任何nxn矩阵,您可以使用其他方法.请注意,getMatrixInverse(m)将数组数组作为输入.请随时提出任何问题.
def transposeMatrix(m):
return map(list,zip(*m))
def getMatrixMinor(m,i,j):
return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]
def getMatrixDeternminant(m):
#base case for 2x2 matrix
if len(m) == 2:
return m[0][0]*m[1][1]-m[0][1]*m[1][0]
determinant = 0
for c in range(len(m)):
determinant += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))
return determinant
def getMatrixInverse(m):
determinant = getMatrixDeternminant(m)
#special case for 2x2 matrix:
if len(m) == 2:
return [[m[1][1]/determinant, -1*m[0][1]/determinant],
[-1*m[1][0]/determinant, m[0][0]/determinant]]
#find matrix of cofactors
cofactors = []
for r in range(len(m)):
cofactorRow = []
for c in range(len(m)):
minor = getMatrixMinor(m,r,c)
cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
cofactors.append(cofactorRow)
cofactors = transposeMatrix(cofactors)
for r in range(len(cofactors)):
for c in range(len(cofactors)):
cofactors[r][c] = cofactors[r][c]/determinant
return cofactors
Run Code Online (Sandbox Code Playgroud)
至少于2018年7月16日,Numba具有快速矩阵逆运算。(您可以在此处查看它们如何重载标准的NumPy逆运算和其他运算。)
这是我的基准测试结果:
import numpy as np
from scipy import linalg as sla
from scipy import linalg as nla
import numba
def gen_ex(d0):
x = np.random.randn(d0,d0)
return x.T + x
@numba.jit
def inv_nla_jit(A):
return np.linalg.inv(A)
@numba.jit
def inv_sla_jit(A):
return sla.inv(A)
Run Code Online (Sandbox Code Playgroud)
对于小型矩阵,它特别快:
ex1 = gen_ex(4)
%timeit inv_nla_jit(ex1) # NumPy + Numba
%timeit inv_sla_jit(ex1) # SciPy + Numba
%timeit nla.inv(ex1) # NumPy
%timeit sla.inv(ex1) # SciPy
Run Code Online (Sandbox Code Playgroud)
[出]
2.54 µs ± 467 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
67.3 µs ± 9.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
63.5 µs ± 7.65 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
56.6 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Run Code Online (Sandbox Code Playgroud)
请注意,加速仅适用于NumPy逆,而不适用于SciPy(如预期的那样)。
略大的矩阵:
ex2 = gen_ex(40)
%timeit inv_nla_jit(ex2) # NumPy + Numba
%timeit inv_sla_jit(ex2) # SciPy + Numba
%timeit nla.inv(ex2) # NumPy
%timeit sla.inv(ex2) # SciPy
Run Code Online (Sandbox Code Playgroud)
[出]
131 µs ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
278 µs ± 26.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
231 µs ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
189 µs ± 11.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
因此,这里仍然有加速的趋势,但是SciPy正在赶上。
这是另一种方法,使用高斯消元法:
def eliminate(r1, r2, col, target=0):
fac = (r2[col]-target) / r1[col]
for i in range(len(r2)):
r2[i] -= fac * r1[i]
def gauss(a):
for i in range(len(a)):
if a[i][i] == 0:
for j in range(i+1, len(a)):
if a[i][j] != 0:
a[i], a[j] = a[j], a[i]
break
else:
raise ValueError("Matrix is not invertible")
for j in range(i+1, len(a)):
eliminate(a[i], a[j], i)
for i in range(len(a)-1, -1, -1):
for j in range(i-1, -1, -1):
eliminate(a[i], a[j], i)
for i in range(len(a)):
eliminate(a[i], a[i], i, target=1)
return a
def inverse(a):
tmp = [[] for _ in a]
for i,row in enumerate(a):
assert len(row) == len(a)
tmp[i].extend(row + [0]*i + [1] + [0]*(len(a)-i-1))
gauss(tmp)
ret = []
for i in range(len(tmp)):
ret.append(tmp[i][len(tmp[i])//2:])
return ret
Run Code Online (Sandbox Code Playgroud)
Ale*_*llo -8
我使用http://cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html中的公式来编写执行 4x4 矩阵求逆的函数:
import numpy as np
def myInverse(A):
detA = np.linalg.det(A)
b00 = A[1,1]*A[2,2]*A[3,3] + A[1,2]*A[2,3]*A[3,1] + A[1,3]*A[2,1]*A[3,2] - A[1,1]*A[2,3]*A[3,2] - A[1,2]*A[2,1]*A[3,3] - A[1,3]*A[2,2]*A[3,1]
b01 = A[0,1]*A[2,3]*A[3,2] + A[0,2]*A[2,1]*A[3,3] + A[0,3]*A[2,2]*A[3,1] - A[0,1]*A[2,2]*A[3,3] - A[0,2]*A[2,3]*A[3,1] - A[0,3]*A[2,1]*A[3,2]
b02 = A[0,1]*A[1,2]*A[3,3] + A[0,2]*A[1,3]*A[3,1] + A[0,3]*A[1,1]*A[3,2] - A[0,1]*A[1,3]*A[3,2] - A[0,2]*A[1,1]*A[3,3] - A[0,3]*A[1,2]*A[3,1]
b03 = A[0,1]*A[1,3]*A[2,2] + A[0,2]*A[1,1]*A[2,3] + A[0,3]*A[1,2]*A[2,1] - A[0,1]*A[1,2]*A[2,3] - A[0,2]*A[1,3]*A[2,1] - A[0,3]*A[1,1]*A[2,2]
b10 = A[1,0]*A[2,3]*A[3,2] + A[1,2]*A[2,0]*A[3,3] + A[1,3]*A[2,2]*A[3,0] - A[1,0]*A[2,2]*A[3,3] - A[1,2]*A[2,3]*A[3,0] - A[1,3]*A[2,0]*A[3,2]
b11 = A[0,0]*A[2,2]*A[3,3] + A[0,2]*A[2,3]*A[3,0] + A[0,3]*A[2,0]*A[3,2] - A[0,0]*A[2,3]*A[3,2] - A[0,2]*A[2,0]*A[3,3] - A[0,3]*A[2,2]*A[3,0]
b12 = A[0,0]*A[1,3]*A[3,2] + A[0,2]*A[1,0]*A[3,3] + A[0,3]*A[1,2]*A[3,0] - A[0,0]*A[1,2]*A[3,3] - A[0,2]*A[1,3]*A[3,0] - A[0,3]*A[1,0]*A[3,2]
b13 = A[0,0]*A[1,2]*A[2,3] + A[0,2]*A[1,3]*A[2,0] + A[0,3]*A[1,0]*A[2,2] - A[0,0]*A[1,3]*A[2,2] - A[0,2]*A[1,0]*A[2,3] - A[0,3]*A[1,2]*A[2,0]
b20 = A[1,0]*A[2,1]*A[3,3] + A[1,1]*A[2,3]*A[3,0] + A[1,3]*A[2,0]*A[3,1] - A[1,0]*A[2,3]*A[3,1] - A[1,1]*A[2,0]*A[3,3] - A[1,3]*A[2,1]*A[3,0]
b21 = A[0,0]*A[2,3]*A[3,1] + A[0,1]*A[2,0]*A[3,3] + A[0,3]*A[2,1]*A[3,0] - A[0,0]*A[2,1]*A[3,3] - A[0,1]*A[2,3]*A[3,0] - A[0,3]*A[2,0]*A[3,1]
b22 = A[0,0]*A[1,1]*A[3,3] + A[0,1]*A[1,3]*A[3,0] + A[0,3]*A[1,0]*A[3,1] - A[0,0]*A[1,3]*A[3,1] - A[0,1]*A[1,0]*A[3,3] - A[0,3]*A[1,1]*A[3,0]
b23 = A[0,0]*A[1,3]*A[2,1] + A[0,1]*A[1,0]*A[2,3] + A[0,3]*A[1,1]*A[2,0] - A[0,0]*A[1,1]*A[2,3] - A[0,1]*A[1,3]*A[2,0] - A[0,3]*A[1,0]*A[2,1]
b30 = A[1,0]*A[2,2]*A[3,1] + A[1,1]*A[2,0]*A[3,2] + A[1,2]*A[2,1]*A[3,0] - A[1,0]*A[2,1]*A[3,2] - A[1,1]*A[2,2]*A[3,0] - A[1,2]*A[2,0]*A[3,1]
b31 = A[0,0]*A[2,1]*A[3,2] + A[0,1]*A[2,2]*A[3,0] + A[0,2]*A[2,0]*A[3,1] - A[0,0]*A[2,2]*A[3,1] - A[0,1]*A[2,0]*A[3,2] - A[0,2]*A[2,1]*A[3,0]
b32 = A[0,0]*A[1,2]*A[3,1] + A[0,1]*A[1,0]*A[3,2] + A[0,2]*A[1,1]*A[3,0] - A[0,0]*A[1,1]*A[3,2] - A[0,1]*A[1,2]*A[3,0] - A[0,2]*A[1,0]*A[3,1]
b33 = A[0,0]*A[1,1]*A[2,2] + A[0,1]*A[1,2]*A[2,0] + A[0,2]*A[1,0]*A[2,1] - A[0,0]*A[1,2]*A[2,1] - A[0,1]*A[1,0]*A[2,2] - A[0,2]*A[1,1]*A[2,0]
Ainv = np.array([[b00, b01, b02, b03], [b10, b11, b12, b13], [b20, b21, b22, b23], [b30, b31, b32, b33]]) / detA
return Ainv
Run Code Online (Sandbox Code Playgroud)