使用 sklearn 对单变量时间序列进行聚类

use*_*581 4 python cluster-analysis machine-learning pandas scikit-learn

我有一个熊猫数据帧,我想从中对每一列进行聚类。我正在使用 sklearn,这就是我所拥有的:

data= pd.read_csv("data.csv")
data=pd.DataFrame(data)
data=data.set_index("Time")
#print(data)
cluster_numbers=2
list_of_cluster=[]
for k,v in data.iteritems():
   temp=KMeans(n_clusters=cluster_numbers)
   temp.fit(data[k])
   print(k)
   print("predicted",temp.predict(data[k]))
   list_of_cluster.append(temp.predict(data[k]))
Run Code Online (Sandbox Code Playgroud)

当我尝试运行它时,出现此错误: ValueError: n_samples=1 should be >= n_clusters=2

我想知道有什么问题,因为我的样本比集群数量多。任何帮助将不胜感激

小智 5

K-Means 聚类器需要一个二维数组,每行一个数据点,也可以是一维的。在您的情况下,您必须将 pandas 列重塑为具有len(data)行和 1 列的矩阵。请参阅下面的示例:

from sklearn.cluster import KMeans
import pandas as pd

data = {'one': [1., 2., 3., 4., 3., 2., 1.], 'two': [4., 3., 2., 1., 2., 3., 4.]}
data = pd.DataFrame(data)

n_clusters = 2

for col in data.columns:
    kmeans = KMeans(n_clusters=n_clusters)
    X = data[col].reshape(-1, 1)
    kmeans.fit(X)
    print "{}: {}".format(col, kmeans.predict(X))
Run Code Online (Sandbox Code Playgroud)