Spark SQL + Cassandra:性能不佳

Has*_*tor 5 scala cassandra apache-spark-sql spark-cassandra-connector

我刚开始使用 Spark SQL + Cassandra,可能遗漏了一些重要的东西,但一个简单的查询需要大约 45 秒。我正在使用cassanda-spark-connector库,并运行也托管 Spark 的本地 Web 服务器。所以我的设置大致是这样的:

在 sbt:

    "org.apache.spark" %% "spark-core" % "1.4.1" excludeAll(ExclusionRule(organization = "org.slf4j")),
    "org.apache.spark" %% "spark-sql" % "1.4.1" excludeAll(ExclusionRule(organization = "org.slf4j")),
    "com.datastax.spark" %% "spark-cassandra-connector" % "1.4.0-M3" excludeAll(ExclusionRule(organization = "org.slf4j"))
Run Code Online (Sandbox Code Playgroud)

在代码中,我有一个托管SparkContextCassandraSQLContetx. 然后从 servlet 调用它。下面是单例代码的样子:

object SparkModel {

  val conf =
    new SparkConf()
      .setAppName("core")
      .setMaster("local")
      .set("spark.cassandra.connection.host", "127.0.0.1")

  val sc = new SparkContext(conf)
  val sqlC = new CassandraSQLContext(sc)
  sqlC.setKeyspace("core")

  val df: DataFrame = sqlC.cassandraSql(
    "SELECT email, target_entity_id, target_entity_type " +
    "FROM tracking_events " +
    "LEFT JOIN customers " +
    "WHERE entity_type = 'User' AND entity_id = customer_id")
}
Run Code Online (Sandbox Code Playgroud)

在这里我如何使用它:

get("/spark") {
  SparkModel.df.collect().map(r => TrackingEvent(r.getString(0), r.getString(1), r.getString(2))).toList
}
Run Code Online (Sandbox Code Playgroud)

Cassandra、Spark 和 Web 应用程序运行在我的 Macbook Pro 虚拟机中的同一台主机上,具有不错的规格。Cassandra 查询本身需要 10-20 毫秒。

当我第一次调用这个端点时,返回结果需要 70-80 秒。后续查询需要大约 45 秒。后续操作的日志是这样的:

12:48:50 INFO  org.apache.spark.SparkContext - Starting job: collect at V1Servlet.scala:1146
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Got job 1 (collect at V1Servlet.scala:1146) with 1 output partitions (allowLocal=false)
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Final stage: ResultStage 1(collect at V1Servlet.scala:1146)
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Parents of final stage: List()
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Missing parents: List()
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Submitting ResultStage 1 (MapPartitionsRDD[29] at collect at V1Servlet.scala:1146), which has no missing parents
12:48:50 INFO  org.apache.spark.storage.MemoryStore - ensureFreeSpace(18696) called with curMem=26661, maxMem=825564856
12:48:50 INFO  org.apache.spark.storage.MemoryStore - Block broadcast_1 stored as values in memory (estimated size 18.3 KB, free 787.3 MB)
12:48:50 INFO  org.apache.spark.storage.MemoryStore - ensureFreeSpace(8345) called with curMem=45357, maxMem=825564856
12:48:50 INFO  org.apache.spark.storage.MemoryStore - Block broadcast_1_piece0 stored as bytes in memory (estimated size 8.1 KB, free 787.3 MB)
12:48:50 INFO  o.a.spark.storage.BlockManagerInfo - Added broadcast_1_piece0 in memory on localhost:56289 (size: 8.1 KB, free: 787.3 MB)
12:48:50 INFO  org.apache.spark.SparkContext - Created broadcast 1 from broadcast at DAGScheduler.scala:874
12:48:50 INFO  o.a.spark.scheduler.DAGScheduler - Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[29] at collect at V1Servlet.scala:1146)
12:48:50 INFO  o.a.s.scheduler.TaskSchedulerImpl - Adding task set 1.0 with 1 tasks
12:48:50 INFO  o.a.spark.scheduler.TaskSetManager - Starting task 0.0 in stage 1.0 (TID 1, localhost, NODE_LOCAL, 59413 bytes)
12:48:50 INFO  org.apache.spark.executor.Executor - Running task 0.0 in stage 1.0 (TID 1)
12:48:50 INFO  com.datastax.driver.core.Cluster - New Cassandra host localhost/127.0.0.1:9042 added
12:48:50 INFO  c.d.s.c.cql.CassandraConnector - Connected to Cassandra cluster: Super Cluster
12:49:11 INFO  o.a.spark.storage.BlockManagerInfo - Removed broadcast_0_piece0 on localhost:56289 in memory (size: 8.0 KB, free: 787.3 MB)
12:49:35 INFO  org.apache.spark.executor.Executor - Finished task 0.0 in stage 1.0 (TID 1). 6124 bytes result sent to driver
12:49:35 INFO  o.a.spark.scheduler.TaskSetManager - Finished task 0.0 in stage 1.0 (TID 1) in 45199 ms on localhost (1/1)
12:49:35 INFO  o.a.s.scheduler.TaskSchedulerImpl - Removed TaskSet 1.0, whose tasks have all completed, from pool 
12:49:35 INFO  o.a.spark.scheduler.DAGScheduler - ResultStage 1 (collect at V1Servlet.scala:1146) finished in 45.199 s
Run Code Online (Sandbox Code Playgroud)

从日志中可以看出,最长的停顿在这 3 行之间(21 + 24 秒):

12:48:50 INFO  c.d.s.c.cql.CassandraConnector - Connected to Cassandra cluster: Super Cluster
12:49:11 INFO  o.a.spark.storage.BlockManagerInfo - Removed broadcast_0_piece0 on localhost:56289 in memory (size: 8.0 KB, free: 787.3 MB)
12:49:35 INFO  org.apache.spark.executor.Executor - Finished task 0.0 in stage 1.0 (TID 1). 6124 bytes result sent to driver
Run Code Online (Sandbox Code Playgroud)

显然,我做错了什么。那是什么?我该如何改进?

编辑:重要的补充:表的大小很小(大约 200 个条目tracking_events,大约 20个条目customers),因此将它们全部读入内存不应该花费任何大量时间。它是本地 Cassandra 安装,不涉及集群,不涉及网络。

Rus*_*ssS 4

  "SELECT email, target_entity_id, target_entity_type " +
    "FROM tracking_events " +
    "LEFT JOIN customers " +
    "WHERE entity_type = 'User' AND entity_id = customer_id")
Run Code Online (Sandbox Code Playgroud)

此查询将从tracking_events 和customers 表中读取所有数据。我会将性能与仅在两个表上执行 SELECT COUNT(*) 进行比较。如果显着不同,则可能存在问题,但我的猜测是,这只是将两个表完全读入内存所需的时间。

有一些旋钮用于调整读取的完成方式,并且由于默认值面向更大的数据集,因此您可能需要更改这些旋钮。

spark.cassandra.input.split.size_in_mb  approx amount of data to be fetched into a Spark partition  64 MB
spark.cassandra.input.fetch.size_in_rows    number of CQL rows fetched per driver request   1000
Run Code Online (Sandbox Code Playgroud)

我会确保您生成的任务数量与您拥有的核心数量(至少)一样多,这样您就可以利用您的所有资源。为此,缩小 input.split.size

获取大小控制执行器核心一次分页的行数,因此增加此大小可以提高某些用例中的速度。