Sla*_*shy 19 c# screenshot image-processing
我正在尝试扫描2个图像(32bppArgb格式),识别何时存在差异并将差异块的边界存储在矩形列表中.
我想获得不同的矩形边界(在我们的例子中打开的目录窗口).
这就是我所做的:
private unsafe List<Rectangle> CodeImage(Bitmap bmp,Bitmap bmp2)
{
List<Rectangle> rec = new List<Rectangle>();
bmData = bmp.LockBits(new System.Drawing.Rectangle(0, 0, 1920, 1080), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
bmData2 = bmp2.LockBits(new System.Drawing.Rectangle(0, 0, 1920, 1080), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp2.PixelFormat);
IntPtr scan0 = bmData.Scan0;
IntPtr scan02 = bmData2.Scan0;
int stride = bmData.Stride;
int stride2 = bmData2.Stride;
int nWidth = bmp.Width;
int nHeight = bmp.Height;
int minX = int.MaxValue; ;
int minY = int.MaxValue;
int maxX = 0;
bool found = false;
for (int y = 0; y < nHeight; y++)
{
byte* p = (byte*)scan0.ToPointer();
p += y * stride;
byte* p2 = (byte*)scan02.ToPointer();
p2 += y * stride2;
for (int x = 0; x < nWidth; x++)
{
if (p[0] != p2[0] || p[1] != p2[1] || p[2] != p2[2] || p[3] != p2[3])//found differences-began to store positions.
{
found = true;
if (x < minX)
minX = x;
if (x > maxX)
maxX = x;
if (y < minY)
minY = y;
}
else
{
if (found)
{
int height = getBlockHeight(stride, scan0, maxX, minY,scan02,stride2);
found = false;
Rectangle temp = new Rectangle(minX, minY, maxX - minX, height);
rec.Add(temp);
//x += minX;
y += height;
minX = int.MaxValue;
minY = int.MaxValue;
maxX = 0;
}
}
p += 4;
p2 += 4;
}
}
return rec;
}
public unsafe int getBlockHeight(int stride, IntPtr scan, int x, int y1,IntPtr scan02,int stride2)//a function to get an existing block height.
{
int height = 0; ;
for (int y = y1; y < 1080; y++)//only for example- in our case its 1080 height.
{
byte* p = (byte*)scan.ToPointer();
p += (y * stride) + (x * 4);//set the pointer to a specific potential point.
byte* p2 = (byte*)scan02.ToPointer();
p2 += (y * stride2) + (x * 4); //set the pointer to a specific potential point.
if (p[0] != p2[0] || p[1] != p2[1] || p[2] != p2[2] || p[3] != p2[3])//still change on the height in the increasing **y** of the block.
height++;
}
}
return height;
}
Run Code Online (Sandbox Code Playgroud)
这实际上是我调用方法的方式:
Bitmap a = Image.FromFile(@"C:\Users\itapi\Desktop\1.png") as Bitmap;//generates a 32bppRgba bitmap;
Bitmap b = Image.FromFile(@"C:\Users\itapi\Desktop\2.png") as Bitmap;//
List<Rectangle> l1 = CodeImage(a, b);
int i = 0;
foreach (Rectangle rec in l1)
{
i++;
Bitmap tmp = b.Clone(rec, a.PixelFormat);
tmp.Save(i.ToString() + ".png");
}
Run Code Online (Sandbox Code Playgroud)
但我没有得到确切的矩形......我只得到了一半,有时甚至更糟.我认为代码逻辑中的某些内容是错误的.
@nico代码
private unsafe List<Rectangle> CodeImage(Bitmap bmp, Bitmap bmp2)
{
List<Rectangle> rec = new List<Rectangle>();
var bmData1 = bmp.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
var bmData2 = bmp2.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp2.PixelFormat);
int bytesPerPixel = 3;
IntPtr scan01 = bmData1.Scan0;
IntPtr scan02 = bmData2.Scan0;
int stride1 = bmData1.Stride;
int stride2 = bmData2.Stride;
int nWidth = bmp.Width;
int nHeight = bmp.Height;
bool[] visited = new bool[nWidth * nHeight];
byte* base1 = (byte*)scan01.ToPointer();
byte* base2 = (byte*)scan02.ToPointer();
for (int y = 0; y < nHeight; y+=5)
{
byte* p1 = base1;
byte* p2 = base2;
for (int x = 0; x < nWidth; x+=5)
{
if (!ArePixelsEqual(p1, p2, bytesPerPixel) && !(visited[x + nWidth * y]))
{
// fill the different area
int minX = x;
int maxX = x;
int minY = y;
int maxY = y;
var pt = new Point(x, y);
Stack<Point> toBeProcessed = new Stack<Point>();
visited[x + nWidth * y] = true;
toBeProcessed.Push(pt);
while (toBeProcessed.Count > 0)
{
var process = toBeProcessed.Pop();
var ptr1 = (byte*)scan01.ToPointer() + process.Y * stride1 + process.X * bytesPerPixel;
var ptr2 = (byte*)scan02.ToPointer() + process.Y * stride2 + process.X * bytesPerPixel;
//Check pixel equality
if (ArePixelsEqual(ptr1, ptr2, bytesPerPixel))
continue;
//This pixel is different
//Update the rectangle
if (process.X < minX) minX = process.X;
if (process.X > maxX) maxX = process.X;
if (process.Y < minY) minY = process.Y;
if (process.Y > maxY) maxY = process.Y;
Point n; int idx;
//Put neighbors in stack
if (process.X - 1 >= 0)
{
n = new Point(process.X - 1, process.Y); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.X + 1 < nWidth)
{
n = new Point(process.X + 1, process.Y); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.Y - 1 >= 0)
{
n = new Point(process.X, process.Y - 1); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.Y + 1 < nHeight)
{
n = new Point(process.X, process.Y + 1); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
}
if (((maxX - minX + 1 )>5) & ((maxY - minY + 1)>5))
rec.Add(new Rectangle(minX, minY, maxX - minX + 1, maxY - minY + 1));
}
p1 += 5 * bytesPerPixel;
p2 += 5 * bytesPerPixel;
}
base1 += 5 * stride1;
base2 += 5 * stride2;
}
bmp.UnlockBits(bmData1);
bmp2.UnlockBits(bmData2);
return rec;
}
Run Code Online (Sandbox Code Playgroud)
我发现你的代码存在一些问题.如果我理解正确,你
我到目前为止对吗?
这里有两个明显的问题:
如果您的图像来自扫描仪或数码相机,或者它们包含有损压缩(jpeg)伪像,则第二个假设几乎肯定是错误的.为了说明这一点,这就是当我将每个相同的像素标记为黑色链接的两个jpg图像以及每个不同的像素白色时,我得到的结果:
你看到的不是一个矩形.相反,您正在寻找的矩形周围的许多像素是不同的:
这是因为jpeg压缩工件.但即使您使用了无损源图像,边界处的像素也可能无法形成完美的矩形,因为抗锯齿或因为背景恰好在该区域中具有相似的颜色.
你可以尝试来改善你的算法,但如果你看看这条边界,你会发现所有的各种丑恶的反以任何几何假设你会成功.
实施这种"正确的方式"可能会更好.含义:
连接组件标签通常要快一点,但要比洪水填充更难.
最后一条建议:如果我是你,我会重新考虑你的"没有第三方图书馆"的政策.即使您的最终产品不包含第三方库,如果您使用库中经过充分记录,经过良好测试的有用构建块,然后使用您自己的代码逐个替换它们,开发可能会快得多.(谁知道,你甚至可能找到一个开源库,其中包含一个比你自己的代码快得多的合适许可证,你最终会坚持使用它......)
ADD:如果你想重新考虑你的"无库"的位置:这是一个使用AForge的快速简单的实现(它具有比emgucv更宽松的库):
private static void ProcessImages()
{
(* load images *)
var img1 = AForge.Imaging.Image.FromFile(@"compare1.jpg");
var img2 = AForge.Imaging.Image.FromFile(@"compare2.jpg");
(* calculate absolute difference *)
var difference = new AForge.Imaging.Filters.ThresholdedDifference(15)
{OverlayImage = img1}
.Apply(img2);
(* create and initialize the blob counter *)
var bc = new AForge.Imaging.BlobCounter();
bc.FilterBlobs = true;
bc.MinWidth = 5;
bc.MinHeight = 5;
(* find blobs *)
bc.ProcessImage(difference);
(* draw result *)
BitmapData data = img2.LockBits(
new Rectangle(0, 0, img2.Width, img2.Height),
ImageLockMode.ReadWrite, img2.PixelFormat);
foreach (var rc in bc.GetObjectsRectangles())
AForge.Imaging.Drawing.FillRectangle(data, rc, Color.FromArgb(128,Color.Red));
img2.UnlockBits(data);
img2.Save(@"compareResult.jpg");
}
Run Code Online (Sandbox Code Playgroud)
对于第二次运行,实际差异+ blob检测部分(没有加载和结果显示)大约需要43ms(由于JITting,缓存等原因,这第一次需要更长的时间)
结果(由于jpeg工件,矩形更大):