我想在一个地图中将两种类型的地图组合在一起,即泡沫和等值线图.目标是通过将鼠标悬停在地图上来显示国家/地区(等值区)以及城市级别(气泡)的人口规模.
等值线图的图解示例代码如下:
library(plotly)
df <- read.csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv')
# light grey boundaries
l <- list(color = toRGB("grey"), width = 0.5)
# specify map projection/options
g <- list(
showframe = FALSE,
showcoastlines = FALSE,
projection = list(type = 'Mercator')
)
plot_ly(df, z = GDP..BILLIONS., text = COUNTRY, locations = CODE, type = 'choropleth',
color = GDP..BILLIONS., colors = 'Blues', marker = list(line = l),
colorbar = list(tickprefix = '$', title = 'GDP Billions US$'),
filename="r-docs/world-choropleth") %>%
layout(title = '2014 Global GDP<br>Source:<a href="https://www.cia.gov/library/publications/the-world-factbook/fields/2195.html">CIA World Factbook</a>',
geo = g)
Run Code Online (Sandbox Code Playgroud)
气泡图的图示示例代码如下:
library(plotly)
df <- read.csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_us_cities.csv')
df$hover <- paste(df$name, "Population", df$pop/1e6, " million")
df$q <- with(df, cut(pop, quantile(pop)))
levels(df$q) <- paste(c("1st", "2nd", "3rd", "4th", "5th"), "Quantile")
df$q <- as.ordered(df$q)
g <- list(
scope = 'usa',
projection = list(type = 'albers usa'),
showland = TRUE,
landcolor = toRGB("gray85"),
subunitwidth = 1,
countrywidth = 1,
subunitcolor = toRGB("white"),
countrycolor = toRGB("white")
)
plot_ly(df, lon = lon, lat = lat, text = hover,
marker = list(size = sqrt(pop/10000) + 1),
color = q, type = 'scattergeo', locationmode = 'USA-states',
filename="r-docs/bubble-map") %>%
layout(title = '2014 US city populations<br>(Click legend to toggle)', geo = g)
Run Code Online (Sandbox Code Playgroud)
怎么可能将两种类型的地图合并为一种呢?
好问题!这是一个简单的例子.注意:
add_trace在绘图顶部添加另一个图表类型图层layout情节的跨所有痕迹共享.layout键描述诸如地图scope,轴title等之类的东西.查看更多布局键.简单的气泡图图
lon = c(-73.9865812, -118.2427266, -87.6244212, -95.3676974)
pop = c(8287238, 3826423, 2705627, 2129784)
df_cities = data.frame(cities, lat, lon, pop)
plot_ly(df_cities, lon=lon, lat=lat,
text=paste0(df_cities$cities,'<br>Population: ', df_cities$pop),
marker= list(size = sqrt(pop/10000) + 1), type="scattergeo",
filename="stackoverflow/simple-scattergeo") %>%
layout(geo = list(scope="usa"))
Run Code Online (Sandbox Code Playgroud)
简单的等值线图
state_codes = c("NY", "CA", "IL", "TX")
pop = c(19746227.0, 38802500.0, 12880580.0, 26956958.0)
df_states = data.frame(state_codes, pop)
plot_ly(df_states, z=pop, locations=state_codes, text=paste0(df_states$state_codes, '<br>Population: ', df_states$pop),
type="choropleth", locationmode="USA-states", colors = 'Purples', filename="stackoverflow/simple-choropleth") %>%
layout(geo = list(scope="usa"))
Run Code Online (Sandbox Code Playgroud)
结合的等值线和气泡图
plot_ly(df_cities, lon=lon, lat=lat,
text=paste0(df_cities$cities,'<br>Population: ', df_cities$pop),
marker= list(size = sqrt(pop/10000) + 1), type="scattergeo",
filename="stackoverflow/choropleth+scattergeo") %>%
add_trace(z=df_states$pop,
locations=df_states$state_codes,
text=paste0(df_states$state_codes, '<br>Population: ', df_states$pop),
type="choropleth",
colors = 'Purples',
locationmode="USA-states") %>%
layout(geo = list(scope="usa"))
Run Code Online (Sandbox Code Playgroud)
请注意,z并locations在第二迹列显式地从df_states数据帧.如果它们来自与第一个跟踪(df_cities声明的plot_ly)相同的数据帧,那么我们可以只编写z=state_codes而不是z=df_states$state_codes(如第二个示例中所示).