den*_*osa 7 scala random-forest apache-spark apache-spark-ml apache-spark-mllib
你们知道我在哪里可以找到Spark中多类分类的例子.我花了很多时间在书本和网络上搜索,到目前为止,我只知道根据文档的最新版本是可能的.
zer*_*323 25
ML
(Spark 2.0+推荐)
我们将使用与下面的MLlib相同的数据.有两个基本选项.如果Estimator支持开箱即用的多类分类(例如随机林),您可以直接使用它:
val trainRawDf = trainRaw.toDF
import org.apache.spark.ml.feature.{Tokenizer, CountVectorizer, StringIndexer}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.RandomForestClassifier
val transformers = Array(
new StringIndexer().setInputCol("group").setOutputCol("label"),
new Tokenizer().setInputCol("text").setOutputCol("tokens"),
new CountVectorizer().setInputCol("tokens").setOutputCol("features")
)
val rf = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
val model = new Pipeline().setStages(transformers :+ rf).fit(trainRawDf)
model.transform(trainRawDf)
Run Code Online (Sandbox Code Playgroud)
如果模型仅支持二进制分类(逻辑回归)和扩展o.a.s.ml.classification.Classifier,则可以使用one-vs-rest策略:
import org.apache.spark.ml.classification.OneVsRest
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
.setLabelCol("label")
.setFeaturesCol("features")
val ovr = new OneVsRest().setClassifier(lr)
val ovrModel = new Pipeline().setStages(transformers :+ ovr).fit(trainRawDf)
Run Code Online (Sandbox Code Playgroud)
MLLib
根据此时的官方文档(MLlib 1.6.0),以下方法支持多类分类:
至少有一些例子使用多类分类:
忽略方法特定参数的一般框架与MLlib中的所有其他方法几乎相同.你必须预先处理您的输入来创建列代表其中一个数据帧label,并features:
root
|-- label: double (nullable = true)
|-- features: vector (nullable = true)
Run Code Online (Sandbox Code Playgroud)
或RDD[LabeledPoint].
Spark提供了广泛的有用工具,旨在促进此过程,包括特征提取器和特征变换器和管道.
您将在下面找到一个使用随机森林的相当天真的例子.
首先让我们导入所需的包并创建虚拟数据:
import sqlContext.implicits._
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
case class LabeledRecord(group: String, text: String)
val trainRaw = sc.parallelize(
LabeledRecord("foo", "foo v a y b foo") ::
LabeledRecord("bar", "x bar y bar v") ::
LabeledRecord("bar", "x a y bar z") ::
LabeledRecord("foobar", "foo v b bar z") ::
LabeledRecord("foo", "foo x") ::
LabeledRecord("foobar", "z y x foo a b bar v") ::
Nil
)
Run Code Online (Sandbox Code Playgroud)
现在让我们定义所需的变换器和过程训练Dataset:
// Tokenizer to process text fields
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
// HashingTF to convert tokens to the feature vector
val hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("features")
.setNumFeatures(10)
// Indexer to convert String labels to Double
val indexer = new StringIndexer()
.setInputCol("group")
.setOutputCol("label")
.fit(trainRaw.toDF)
def transfom(rdd: RDD[LabeledRecord]) = {
val tokenized = tokenizer.transform(rdd.toDF)
val hashed = hashingTF.transform(tokenized)
val indexed = indexer.transform(hashed)
indexed
.select($"label", $"features")
.map{case Row(label: Double, features: Vector) =>
LabeledPoint(label, features)}
}
val train: RDD[LabeledPoint] = transfom(trainRaw)
Run Code Online (Sandbox Code Playgroud)
请注意,indexer列车数据已"适合".它只是意味着用作标签的分类值被转换为doubles.要在新数据上使用分类器,您必须首先使用它进行转换indexer.
接下来我们可以训练RF模型:
val numClasses = 3
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 10
val featureSubsetStrategy = "auto"
val impurity = "gini"
val maxDepth = 4
val maxBins = 16
val model = RandomForest.trainClassifier(
train, numClasses, categoricalFeaturesInfo,
numTrees, featureSubsetStrategy, impurity,
maxDepth, maxBins
)
Run Code Online (Sandbox Code Playgroud)
最后测试一下:
val testRaw = sc.parallelize(
LabeledRecord("foo", "foo foo z z z") ::
LabeledRecord("bar", "z bar y y v") ::
LabeledRecord("bar", "a a bar a z") ::
LabeledRecord("foobar", "foo v b bar z") ::
LabeledRecord("foobar", "a foo a bar") ::
Nil
)
val test: RDD[LabeledPoint] = transfom(testRaw)
val predsAndLabs = test.map(lp => (model.predict(lp.features), lp.label))
val metrics = new MulticlassMetrics(predsAndLabs)
metrics.precision
metrics.recall
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11074 次 |
| 最近记录: |