Gut*_*ore 4 logic haskell pattern-matching
我试图在Haskell中创建一个命题逻辑模型,我需要一个函数将一些逻辑规则应用于特定的子表达式.函数"apply"采用一个列表,该列表指示树中子表达式的位置(根据右和左序列),逻辑规则和逻辑表达式,并返回一个新的逻辑表达式.
data LogicExp a = P a |
True' |
False' |
Not' (LogicExp a) |
(LogicExp a) :& (LogicExp a) |
(LogicExp a) :| (LogicExp a) |
(LogicExp a) :=> (LogicExp a) |
(LogicExp a) := (LogicExp a)
deriving Show
type LExp = LogicExp String
data Position = L | R
deMorgan :: LExp -> LExp
deMorgan (e1 :& e2) = Not' ((Not e1) :| (Not e2))
deMorgan (e1 :| e2) = Not' ((Not e1) :& (Not e2))
deMorgan x = x
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (e1 :& e2) = (apply xs f e1) :& e2
apply (R:xs) f (e1 :& e2) = e1 :& (apply xs f e2)
apply (L:xs) f (e1 :| e2) = (apply xs f e1) :| e2
apply (R:xs) f (e1 :| e2) = e1 :| (apply xs f e2)
apply (L:xs) f (e1 :=> e2) = (apply xs f e1) :=> e2
apply (R:xs) f (e1 :=> e2) = e1 :=> (apply xs f e2)
apply (L:xs) f (e1 := e2) = (apply xs f e1) := e2
apply (R:xs) f (e1 := e2) = e1 := (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
Run Code Online (Sandbox Code Playgroud)
功能正常.但是我可以使用一些数据构造函数"wildcard"来获得更简单的函数吗?
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (e1 ?? e2) = (apply xs f e1) ?? e2
apply (R:xs) f (e1 ?? e2) = e1 ?? (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
Run Code Online (Sandbox Code Playgroud)
目前我不记得任何花哨的技巧.但是,您可能想要做的一件事是将LogicExp构造函数中的公共结构分解出来:
data LogicExp a
= P a
| True'
| False'
| Not' (LogicExp a)
| Bin' BinaryOp (LogicExp a) (LogicExp a)
deriving Show
data BinaryOp = And' | Or' | Impl' | Equiv'
deriving Show
Run Code Online (Sandbox Code Playgroud)
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (Bin' op e1 e2) = Bin' op (apply xs f e1) e2
apply (R:xs) f (Bin' op e1 e2) = Bin' op e1 (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
-- ... and the P, True' and False' cases.
Run Code Online (Sandbox Code Playgroud)
通过这样做,你失去了可爱的中缀构造函数.但是,如果你真的想要它们,那么就有一个奇特的技巧:查看模式(另请参阅此问题以获取更多示例和讨论).
这是使用Generics软件包syb或uniplate之一的经典案例。
通常uniplate速度更快,但不如syb。幸运的是,在这种情况下,您可以使用uniplate。
使用步骤uniplate:
DeriveDataTypeable编译。Data和TypeableData.Data和单板模块,如Data.Generics.Uniplate.Data您想要的转换函数只是transform带有适当的类型签名:
doit :: LExp -> LExp
doit = transform deMorgan
Run Code Online (Sandbox Code Playgroud)
deMorgan确切地写在哪里。
完整的例子:
{-# LANGUAGE DeriveDataTypeable #-}
module Lib6 where
import Data.Data
import Data.Generics.Uniplate.Data
import Text.Show.Pretty (ppShow)
data LogicExp a = P a |
True' |
False' |
Not' (LogicExp a) |
(LogicExp a) :& (LogicExp a) |
(LogicExp a) :| (LogicExp a) |
(LogicExp a) :=> (LogicExp a) |
(LogicExp a) := (LogicExp a)
deriving (Show, Data, Typeable)
type LExp = LogicExp String
data Position = L | R
deMorgan :: LExp -> LExp
deMorgan (e1 :& e2) = Not' ((Not' e1) :| (Not' e2))
deMorgan (e1 :| e2) = Not' ((Not' e1) :& (Not' e2))
deMorgan x = x
doit :: LExp -> LExp
doit = transform deMorgan
example = (P "a" :& P "b") :| (P "c")
test = putStrLn $ ppShow (doit example)
Run Code Online (Sandbox Code Playgroud)
运行test产生:
Not' (Not' (Not' (Not' (P "a") :| Not' (P "b"))) :& Not' (P "c"))
Run Code Online (Sandbox Code Playgroud)
uniplate入门教程:
http://community.haskell.org/~ndm/darcs/uniplate/uniplate.htm