Mic*_*ael 15 python machine-learning keras
通过Keras神经网络运行一组标记的向量.
查看Keras数据集示例mnist:
keras.datasets import mnist
(x_tr, y_tr), (x_te, y_te) = mnist.load_data()
print x_tr.shape
Run Code Online (Sandbox Code Playgroud)
它似乎是一个三维numpy数组:
(60000, 28, 28)
Run Code Online (Sandbox Code Playgroud)
构建标记的向量:
X_train = numpy.array([[1] * 128] * (10 ** 4) + [[0] * 128] * (10 ** 4))
X_test = numpy.array([[1] * 128] * (10 ** 2) + [[0] * 128] * (10 ** 2))
Y_train = numpy.array([True] * (10 ** 4) + [False] * (10 ** 4))
Y_test = numpy.array([True] * (10 ** 2) + [False] * (10 ** 2))
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
Y_train = Y_train.astype("bool")
Y_test = Y_test.astype("bool")
Run Code Online (Sandbox Code Playgroud)
model = Sequential()
model.add(Dense(128, 50))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(50, 50))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(50, 1))
model.add(Activation('softmax'))
rms = RMSprop()
model.compile(loss='binary_crossentropy', optimizer=rms)
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
show_accuracy=True, verbose=2, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
Run Code Online (Sandbox Code Playgroud)
Test score: 13.9705320154
Test accuracy: 1.0
Run Code Online (Sandbox Code Playgroud)
为什么我会为这样一个简单的数据集得到如此糟糕的结果?我的数据集是否格式错误?
谢谢!
仅在一个输出节点上的softmax没有多大意义.如果您更改model.add(Activation('softmax'))
为model.add(Activation('sigmoid'))
,则表明您的网络运行良好.
或者你也可以使用两个输出节点,其中1, 0
代表的情况True
和0, 1
代表的情况False
.然后你可以使用softmax图层.你只需要改变你的Y_train
和Y_test
相应.