BOB*_*BOB 5 language-agnostic algorithm bit-manipulation fft
我试图理解这个位反转算法。我找到了很多资料,但它并没有真正解释伪代码是如何工作的。例如,我从http://www.briangough.com/fftalgorithms.pdf找到了下面的伪代码
\n\nfor i = 0 ... n \xe2\x88\x92 2 do\n k = n/2\n if i < j then\n swap g(i) and g(j)\n end if\n while k \xe2\x89\xa4 j do\n j \xe2\x87\x90 j \xe2\x88\x92 k\n k \xe2\x87\x90 k/2\n end while\n j \xe2\x87\x90 j + k\nend for\nRun Code Online (Sandbox Code Playgroud)\n\n从这个伪代码来看,我不明白你为什么要这么做
\n\nswap g(i) and g(j)
当if声明是true.
另外:while循环有什么作用?如果有人可以向我解释这个伪代码,那就太好了。
下面是我在网上找到的c++代码。
\n\nvoid four1(double data[], int nn, int isign)\n{\n int n, mmax, m, j, istep, i;\n double wtemp, wr, wpr, wpi, wi, theta;\n double tempr, tempi;\n\n n = nn << 1;\n j = 1;\n for (i = 1; i < n; i += 2) {\n if (j > i) {\n tempr = data[j]; data[j] = data[i]; data[i] = tempr;\n tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;\n }\n m = n >> 1;\n while (m >= 2 && j > m) {\n j -= m;\n m >>= 1;\n }\n j += m;\n }\nRun Code Online (Sandbox Code Playgroud)\n\n这是我发现的 FFT 源代码的完整版本
\n\n/************************************************\n* FFT code from the book Numerical Recipes in C *\n* Visit www.nr.com for the licence. *\n************************************************/\n\n// The following line must be defined before including math.h to correctly define M_PI\n#define _USE_MATH_DEFINES\n#include <math.h>\n#include <stdio.h>\n#include <stdlib.h>\n\n#define PI M_PI /* pi to machine precision, defined in math.h */\n#define TWOPI (2.0*PI)\n\n/*\n FFT/IFFT routine. (see pages 507-508 of Numerical Recipes in C)\n\n Inputs:\n data[] : array of complex* data points of size 2*NFFT+1.\n data[0] is unused,\n * the n\'th complex number x(n), for 0 <= n <= length(x)-1, is stored as:\n data[2*n+1] = real(x(n))\n data[2*n+2] = imag(x(n))\n if length(Nx) < NFFT, the remainder of the array must be padded with zeros\n\n nn : FFT order NFFT. This MUST be a power of 2 and >= length(x).\n isign: if set to 1, \n computes the forward FFT\n if set to -1, \n computes Inverse FFT - in this case the output values have\n to be manually normalized by multiplying with 1/NFFT.\n Outputs:\n data[] : The FFT or IFFT results are stored in data, overwriting the input.\n*/\n\nvoid four1(double data[], int nn, int isign)\n{\n int n, mmax, m, j, istep, i;\n double wtemp, wr, wpr, wpi, wi, theta;\n double tempr, tempi;\n\n n = nn << 1;\n j = 1;\n for (i = 1; i < n; i += 2) {\n if (j > i) {\n //swap the real part\n tempr = data[j]; data[j] = data[i]; data[i] = tempr;\n //swap the complex part\n tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;\n }\n m = n >> 1;\n while (m >= 2 && j > m) {\n j -= m;\n m >>= 1;\n }\n j += m;\n }\n mmax = 2;\n while (n > mmax) {\n istep = 2*mmax;\n theta = TWOPI/(isign*mmax);\n wtemp = sin(0.5*theta);\n wpr = -2.0*wtemp*wtemp;\n wpi = sin(theta);\n wr = 1.0;\n wi = 0.0;\n for (m = 1; m < mmax; m += 2) {\n for (i = m; i <= n; i += istep) {\n j =i + mmax;\n tempr = wr*data[j] - wi*data[j+1];\n tempi = wr*data[j+1] + wi*data[j];\n data[j] = data[i] - tempr;\n data[j+1] = data[i+1] - tempi;\n data[i] += tempr;\n data[i+1] += tempi;\n }\n wr = (wtemp = wr)*wpr - wi*wpi + wr;\n wi = wi*wpr + wtemp*wpi + wi;\n }\n mmax = istep;\n }\n}\n\n/********************************************************\n* The following is a test routine that generates a ramp *\n* with 10 elements, finds their FFT, and then finds the *\n* original sequence using inverse FFT *\n********************************************************/\n\nint main(int argc, char * argv[])\n{\n int i;\n int Nx;\n int NFFT;\n double *x;\n double *X;\n\n /* generate a ramp with 10 numbers */\n Nx = 10;\n printf("Nx = %d\\n", Nx);\n x = (double *) malloc(Nx * sizeof(double));\n for(i=0; i<Nx; i++)\n {\n x[i] = i;\n }\n\n /* calculate NFFT as the next higher power of 2 >= Nx */\n NFFT = (int)pow(2.0, ceil(log((double)Nx)/log(2.0)));\n printf("NFFT = %d\\n", NFFT);\n\n /* allocate memory for NFFT complex numbers (note the +1) */\n X = (double *) malloc((2*NFFT+1) * sizeof(double));\n\n /* Storing x(n) in a complex array to make it work with four1. \n This is needed even though x(n) is purely real in this case. */\n for(i=0; i<Nx; i++)\n {\n X[2*i+1] = x[i];\n X[2*i+2] = 0.0;\n }\n /* pad the remainder of the array with zeros (0 + 0 j) */\n for(i=Nx; i<NFFT; i++)\n {\n X[2*i+1] = 0.0;\n X[2*i+2] = 0.0;\n }\n\n printf("\\nInput complex sequence (padded to next highest power of 2):\\n");\n for(i=0; i<NFFT; i++)\n {\n printf("x[%d] = (%.2f + j %.2f)\\n", i, X[2*i+1], X[2*i+2]);\n }\n\n /* calculate FFT */\n four1(X, NFFT, 1);\n\n printf("\\nFFT:\\n");\n for(i=0; i<NFFT; i++)\n {\n printf("X[%d] = (%.2f + j %.2f)\\n", i, X[2*i+1], X[2*i+2]);\n }\n\n /* calculate IFFT */\n four1(X, NFFT, -1);\n\n /* normalize the IFFT */\n for(i=0; i<NFFT; i++)\n {\n X[2*i+1] /= NFFT;\n X[2*i+2] /= NFFT;\n }\n\n printf("\\nComplex sequence reconstructed by IFFT:\\n");\n for(i=0; i<NFFT; i++)\n {\n printf("x[%d] = (%.2f + j %.2f)\\n", i, X[2*i+1], X[2*i+2]);\n }\n\n getchar();\n}\n\n/*\n\nNx = 10\nNFFT = 16\n\nInput complex sequence (padded to next highest power of 2):\nx[0] = (0.00 + j 0.00)\nx[1] = (1.00 + j 0.00)\nx[2] = (2.00 + j 0.00)\nx[3] = (3.00 + j 0.00)\nx[4] = (4.00 + j 0.00)\nx[5] = (5.00 + j 0.00)\nx[6] = (6.00 + j 0.00)\nx[7] = (7.00 + j 0.00)\nx[8] = (8.00 + j 0.00)\nx[9] = (9.00 + j 0.00)\nx[10] = (0.00 + j 0.00)\nx[11] = (0.00 + j 0.00)\nx[12] = (0.00 + j 0.00)\nx[13] = (0.00 + j 0.00)\nx[14] = (0.00 + j 0.00)\nx[15] = (0.00 + j 0.00)\n\nFFT:\nX[0] = (45.00 + j 0.00)\nX[1] = (-25.45 + j 16.67)\nX[2] = (10.36 + j -3.29)\nX[3] = (-9.06 + j -2.33)\nX[4] = (4.00 + j 5.00)\nX[5] = (-1.28 + j -5.64)\nX[6] = (-2.36 + j 4.71)\nX[7] = (3.80 + j -2.65)\nX[8] = (-5.00 + j 0.00)\nX[9] = (3.80 + j 2.65)\nX[10] = (-2.36 + j -4.71)\nX[11] = (-1.28 + j 5.64)\nX[12] = (4.00 + j -5.00)\nX[13] = (-9.06 + j 2.33)\nX[14] = (10.36 + j 3.29)\nX[15] = (-25.45 + j -16.67)\n\nComplex sequence reconstructed by IFFT:\nx[0] = (0.00 + j -0.00)\nx[1] = (1.00 + j -0.00)\nx[2] = (2.00 + j 0.00)\nx[3] = (3.00 + j -0.00)\nx[4] = (4.00 + j -0.00)\nx[5] = (5.00 + j 0.00)\nx[6] = (6.00 + j -0.00)\nx[7] = (7.00 + j -0.00)\nx[8] = (8.00 + j 0.00)\nx[9] = (9.00 + j 0.00)\nx[10] = (0.00 + j -0.00)\nx[11] = (0.00 + j -0.00)\nx[12] = (0.00 + j 0.00)\nx[13] = (-0.00 + j -0.00)\nx[14] = (0.00 + j 0.00)\nx[15] = (0.00 + j 0.00)\n\n*/\nRun Code Online (Sandbox Code Playgroud)\n
位反转算法通过反转每个项目的二进制地址来创建数据集的排列;例如,在 16 项集合中,地址:
0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
将更改为:
1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111
然后相应的项将移动到新地址。
或者用十进制表示:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
变为
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
伪代码中的 while 循环的作用是将变量 j 设置为该序列。(顺便说一句,j 的初始值应该为 0)。
您将看到该序列的组成如下:
0
0 1
0 2 1 3
0 4 2 6 1 5 3 7
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
每个序列都是通过将前一个版本乘以 2,然后添加 1 来重复得到的。或者以另一种方式看待它:通过重复前面的序列,与值 + n/2 交错(这更接近地描述了算法中发生的情况)。
0
0 1
0 2 1 3
0 4 2 6 1 5 3 7
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
Run Code Online (Sandbox Code Playgroud)
然后,i 和 j 项会在 for 循环的每次迭代中交换,但前提是 i < j;否则,每个项目都将被交换到新位置(例如,当 i = 3 且 j = 12 时),然后再次返回(当 i = 12 且 j = 3 时)。
0
0 1
0 2 1 3
0 4 2 6 1 5 3 7
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
Run Code Online (Sandbox Code Playgroud)
您发现的 C++ 代码似乎使用序列的对称性以双步循环遍历它。但它不会产生正确的结果,所以要么是一次失败的尝试,要么它的设计目的是完全不同的。这是使用两步思想的版本:
function bitReversal(data) {
var n = data.length;
var j = 0;
for (i = 0; i < n - 1; i++) {
var k = n / 2;
if (i < j) {
var temp = data[i]; data[i] = data[j]; data[j] = temp;
}
while (k <= j) {
j -= k;
k /= 2;
}
j += k;
}
return(data);
}
console.log(bitReversal([0,1]));
console.log(bitReversal([0,1,2,3]));
console.log(bitReversal([0,1,2,3,4,5,6,7]));
console.log(bitReversal([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]));
console.log(bitReversal(["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p"]));Run Code Online (Sandbox Code Playgroud)