如何使用6*k + - 1规则生成Primes

Uma*_*nth 20 java optimization primes sieve

我们知道可以使用以下方法生成3以上的所有素数:

6 * k + 1
6 * k - 1
Run Code Online (Sandbox Code Playgroud)

但是,我们从上面的公式生成的所有数字都不是素数.

For Example:    
6 * 6 - 1 = 35 which is clearly divisible by 5.
Run Code Online (Sandbox Code Playgroud)

为了消除这些条件,我使用Sieve方法并删除了数字,这些数字是从上面公式生成的数字的因子.

使用事实:

如果没有素数因素,那么一个数字被称为素数.

  1. 因为我们可以使用上面的公式生成所有素数.
  2. 如果我们可以删除上述数字的所有倍数,我们只剩下素数.

生成低于1000的素数.

ArrayList<Integer> primes = new ArrayList<>();
primes.add(2);//explicitly add
primes.add(3);//2 and 3
int n = 1000;
for (int i = 1; i <= (n / 6) ; i++) {
//get all the numbers which can be generated by the formula
    int prod6k = 6 * i;
    primes.add(prod6k - 1);
    primes.add(prod6k + 1);
}
for (int i = 0; i < primes.size(); i++) {
    int k = primes.get(i);
    //remove all the factors of the numbers generated by the formula
    for(int j = k * k; j <= n; j += k)//changed to k * k from 2 * k, Thanks to DTing
    {           
        int index = primes.indexOf(j); 
        if(index != -1)
            primes.remove(index);
    }
}
System.out.println(primes);
Run Code Online (Sandbox Code Playgroud)

但是,此方法确实正确生成素数.这样运行速度要快得多,因为我们不需要检查我们在Sieve中检查的所有数字.

我的问题是,我错过了任何边缘案例吗?这会好很多但我从未见过有人使用过这个.难道我做错了什么?

这种方法可以更加优化吗?


以一个boolean[]代替ArrayList的速度要快得多.

int n = 100000000;
boolean[] primes = new boolean[n + 1];
for (int i = 0; i <= n; i++)
    primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 1; i <= n / 6; i++) {
    int prod6k = 6 * i;
    primes[prod6k + 1] = true;
    primes[prod6k - 1] = true;
}
for (int i = 0; i <= n; i++) {
    if (primes[i]) {
        int k = i;
        for (int j = k * k; j <= n && j > 0; j += k) {
               primes[j] = false;
        }
      }
}
for (int i = 0; i <= n; i++)
    if (primes[i]) 
        System.out.print(i + " ");
Run Code Online (Sandbox Code Playgroud)

dur*_*597 6

5是您的标准生成的第一个数字.让我们来看看最多生成25的数字:

5,6,7,8, 9, 10,11,12,13,14, 15, 16,17,18,19,20, 21, 22,23,24,25

现在,让我们看看这些相同的数字,当我们使用Sieve of Eratosthenes算法时:

5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

删除2后:

5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

删除3后:

5,6,7,8, 9, 10,11,12,13,14, 15, 16,17,18,19,20, 21, 22,23,24,25

这与第一套相同!注意它们都包括25,这不是素数.如果我们考虑一下,这是一个明显的结果.考虑任意一组6个连续数字:

6k - 3,6k - 2,6k - 1,6k,6k + 1,6k + 2

如果我们考虑一点,我们得到:

3*(2k - 1),2*(3k - 1),6k - 1,6*(k),6k + 1,2*(3k + 1)

在任何一组6个连续数字中,其中3个可以被2整除,其中2个可以被3整除.这些正是我们到目前为止删除的数字!因此:

你的算法只使用6k - 16k + 1前两轮的Erathosthenes筛子完全相同.

与Sieve相比,这是一个相当不错的速度提升,因为我们不必添加所有这些额外的元素只是为了删除它们.这解释了为什么你的算法有效以及为什么它不会错过任何情况; 因为它与Sieve完全相同.


无论如何,我同意,一旦你产生素数,你的boolean方式是迄今为止最快的.我已经使用你的ArrayList方式,你的boolean[]方式和我自己的方式使用LinkedList和设置了一个基准测试iterator.remove()(因为删除很快LinkedList.这是我的测试工具的代码.注意我运行测试12次以确保JVM被加热up,我打印列表的大小并更改大小n以尝试防止过多的分支预测优化.通过+= 6在初始种子中使用,您也可以在所有三种方法中获得更快,而不是prod6k:

import java.util.*;

public class PrimeGenerator {
  public static List<Integer> generatePrimesArrayList(int n) {
    List<Integer> primes = new ArrayList<>(getApproximateSize(n));
    primes.add(2);// explicitly add
    primes.add(3);// 2 and 3

    for (int i = 6; i <= n; i+=6) {
      // get all the numbers which can be generated by the formula
      primes.add(i - 1);
      primes.add(i + 1);
    }

    for (int i = 0; i < primes.size(); i++) {
      int k = primes.get(i);
      // remove all the factors of the numbers generated by the formula
      for (int j = k * k; j <= n; j += k)// changed to k * k from 2 * k, Thanks
                                         // to DTing
      {
        int index = primes.indexOf(j);
        if (index != -1)
          primes.remove(index);
      }
    }
    return primes;
  }

  public static List<Integer> generatePrimesBoolean(int n) {
    boolean[] primes = new boolean[n + 5];
    for (int i = 0; i <= n; i++)
      primes[i] = false;
    primes[2] = primes[3] = true;

    for (int i = 6; i <= n; i+=6) {
      primes[i + 1] = true;
      primes[i - 1] = true;
    }

    for (int i = 0; i <= n; i++) {
      if (primes[i]) {
        int k = i;
        for (int j = k * k; j <= n && j > 0; j += k) {
          primes[j] = false;
        }
      }
    }

    int approximateSize = getApproximateSize(n);
    List<Integer> primesList = new ArrayList<>(approximateSize);
    for (int i = 0; i <= n; i++)
      if (primes[i])
        primesList.add(i);

    return primesList;
  }

  private static int getApproximateSize(int n) {
    // Prime Number Theorem. Round up
    int approximateSize = (int) Math.ceil(((double) n) / (Math.log(n)));
    return approximateSize;
  }

  public static List<Integer> generatePrimesLinkedList(int n) {
    List<Integer> primes = new LinkedList<>();
    primes.add(2);// explicitly add
    primes.add(3);// 2 and 3

    for (int i = 6; i <= n; i+=6) {
      // get all the numbers which can be generated by the formula
      primes.add(i - 1);
      primes.add(i + 1);
    }

    for (int i = 0; i < primes.size(); i++) {
      int k = primes.get(i);
      for (Iterator<Integer> iterator = primes.iterator(); iterator.hasNext();) {
        int primeCandidate = iterator.next();
        if (primeCandidate == k)
          continue; // Always skip yourself
        if (primeCandidate == (primeCandidate / k) * k)
          iterator.remove();
      }
    }
    return primes;
  }

  public static void main(String... args) {
    int initial = 4000;

    for (int i = 0; i < 12; i++) {
      int n = initial * i;
      long start = System.currentTimeMillis();
      List<Integer> result = generatePrimesArrayList(n);
      long seconds = System.currentTimeMillis() - start;
      System.out.println(result.size() + "\tArrayList Seconds: " + seconds);

      start = System.currentTimeMillis();
      result = generatePrimesBoolean(n);
      seconds = System.currentTimeMillis() - start;
      System.out.println(result.size() + "\tBoolean Seconds: " + seconds);

      start = System.currentTimeMillis();
      result = generatePrimesLinkedList(n);
      seconds = System.currentTimeMillis() - start;
      System.out.println(result.size() + "\tLinkedList Seconds: " + seconds);
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

以及最后几次试验的结果:

3432    ArrayList Seconds: 430
3432    Boolean Seconds: 0
3432    LinkedList Seconds: 90
3825    ArrayList Seconds: 538
3824    Boolean Seconds: 0
3824    LinkedList Seconds: 81
4203    ArrayList Seconds: 681
4203    Boolean Seconds: 0
4203    LinkedList Seconds: 100
4579    ArrayList Seconds: 840
4579    Boolean Seconds: 0
4579    LinkedList Seconds: 111
Run Code Online (Sandbox Code Playgroud)


DTi*_*ing 4

您不需要将所有可能的候选者添加到数组中。您可以创建一个 Set 来存储所有非素数。

\n\n

您也可以开始检查k * k,而不是2 * k

\n\n
  public void primesTo1000() {\n    Set<Integer> notPrimes = new HashSet<>();\n    ArrayList<Integer> primes = new ArrayList<>();\n    primes.add(2);//explicitly add\n    primes.add(3);//2 and 3\n\n    for (int i = 1; i < (1000 / 6); i++) {\n      handlePossiblePrime(6 * i - 1, primes, notPrimes);\n      handlePossiblePrime(6 * i + 1, primes, notPrimes);\n    }\n    System.out.println(primes);\n  }\n\n  public void handlePossiblePrime(\n      int k, List<Integer> primes, Set<Integer> notPrimes) {\n    if (!notPrimes.contains(k)) {\n      primes.add(k);\n      for (int j = k * k; j <= 1000; j += k) {\n        notPrimes.add(j);\n      }\n    }\n  }\n
Run Code Online (Sandbox Code Playgroud)\n\n

未经测试的代码,检查角落

\n\n
\n\n

这是筛子的一个包装版本,如@Will Ness引用的答案中所建议的。此版本不是返回第 n素数,而是返回 n 的素数列表:

\n\n
public List<Integer> primesTo(int n) {\n  List<Integer> primes = new ArrayList<>();\n  if (n > 1) {\n    int limit = (n - 3) >> 1;\n    int[] sieve = new int[(limit >> 5) + 1];\n    for (int i = 0; i <= (int) (Math.sqrt(n) - 3) >> 1; i++)\n      if ((sieve[i >> 5] & (1 << (i & 31))) == 0) {\n        int p = i + i + 3;\n        for (int j = (p * p - 3) >> 1; j <= limit; j += p)\n          sieve[j >> 5] |= 1 << (j & 31);\n      }\n    primes.add(2);\n    for (int i = 0; i <= limit; i++)\n      if ((sieve[i >> 5] & (1 << (i & 31))) == 0)\n        primes.add(i + i + 3);\n  }\n  return primes;\n}\n
Run Code Online (Sandbox Code Playgroud)\n\n
\n\n

您更新的代码中似乎存在一个使用布尔数组的错误(它没有返回所有素数)。

\n\n
public static List<Integer> booleanSieve(int n) {\n  boolean[] primes = new boolean[n + 5];\n  for (int i = 0; i <= n; i++)\n    primes[i] = false;\n  primes[2] = primes[3] = true;\n  for (int i = 1; i <= n / 6; i++) {\n    int prod6k = 6 * i;\n    primes[prod6k + 1] = true;\n    primes[prod6k - 1] = true;\n  }\n  for (int i = 0; i <= n; i++) {\n    if (primes[i]) {\n      int k = i;\n      for (int j = k * k; j <= n && j > 0; j += k) {\n        primes[j] = false;\n      }\n    }\n  }\n\n  List<Integer> primesList = new ArrayList<>();\n  for (int i = 0; i <= n; i++)\n    if (primes[i])\n      primesList.add(i);\n\n  return primesList;\n}\n\npublic static List<Integer> bitPacking(int n) {\n  List<Integer> primes = new ArrayList<>();\n  if (n > 1) {\n    int limit = (n - 3) >> 1;\n    int[] sieve = new int[(limit >> 5) + 1];\n    for (int i = 0; i <= (int) (Math.sqrt(n) - 3) >> 1; i++)\n      if ((sieve[i >> 5] & (1 << (i & 31))) == 0) {\n        int p = i + i + 3;\n        for (int j = (p * p - 3) >> 1; j <= limit; j += p)\n          sieve[j >> 5] |= 1 << (j & 31);\n      }\n    primes.add(2);\n    for (int i = 0; i <= limit; i++)\n      if ((sieve[i >> 5] & (1 << (i & 31))) == 0)\n        primes.add(i + i + 3);\n  }\n  return primes;\n}\n\npublic static void main(String... args) {\n  Executor executor = Executors.newSingleThreadExecutor();\n  executor.execute(() -> {\n    for (int i = 0; i < 10; i++) {\n      int n = (int) Math.pow(10, i);\n      Stopwatch timer = Stopwatch.createUnstarted();\n      timer.start();\n      List<Integer> result = booleanSieve(n);\n      timer.stop();\n      System.out.println(result.size() + "\\tBoolean: " + timer);\n    }\n\n    for (int i = 0; i < 10; i++) {\n      int n = (int) Math.pow(10, i);\n      Stopwatch timer = Stopwatch.createUnstarted();\n      timer.start();\n      List<Integer> result = bitPacking(n);\n      timer.stop();\n      System.out.println(result.size() + "\\tBitPacking: " + timer);\n    }\n  });\n}\n
Run Code Online (Sandbox Code Playgroud)\n\n
\n\n
0   Boolean: 38.51 \xce\xbcs\n4   Boolean: 45.77 \xce\xbcs\n25  Boolean: 31.56 \xce\xbcs\n168 Boolean: 227.1 \xce\xbcs\n1229    Boolean: 1.395 ms\n9592    Boolean: 4.289 ms\n78491   Boolean: 25.96 ms\n664116  Boolean: 133.5 ms\n5717622 Boolean: 3.216 s\n46707218    Boolean: 32.18 s\n0   BitPacking: 117.0 \xce\xbcs\n4   BitPacking: 11.25 \xce\xbcs\n25  BitPacking: 11.53 \xce\xbcs\n168 BitPacking: 70.03 \xce\xbcs\n1229    BitPacking: 471.8 \xce\xbcs\n9592    BitPacking: 3.701 ms\n78498   BitPacking: 9.651 ms\n664579  BitPacking: 43.43 ms\n5761455 BitPacking: 1.483 s\n50847534    BitPacking: 17.71 s\n
Run Code Online (Sandbox Code Playgroud)\n