Aus*_*n A 5 python asynchronous shared-memory multiprocessing shared-state
问题
我正在使用Python的多处理模块来异步执行功能。我想做的是能够跟踪每个进程调用和执行时脚本的总体进度def add_print
。例如,我希望下面的代码在每次进程运行该函数时将其加1 total
并打印出值(1 2 3 ... 18 19 20
)。我的第一次尝试是使用全局变量,但这没有用。由于该函数是异步调用的,因此每个进程读取total
为0开始,并独立于其他进程加1。因此,输出为20 1
而不是递增值。
即使函数是异步运行的,我如何才能以同步方式从映射函数中引用相同的内存块?我的一个想法是以某种方式缓存total
在内存中,然后在添加到时引用该确切的内存块total
。这是python中一种可能且基本合理的方法吗?
请让我知道您是否需要更多信息或我的解释不够充分。
谢谢!
码
#!/usr/bin/python
## Import builtins
from multiprocessing import Pool
total = 0
def add_print(num):
global total
total += 1
print total
if __name__ == "__main__":
nums = range(20)
pool = Pool(processes=20)
pool.map(add_print, nums)
Run Code Online (Sandbox Code Playgroud)
您可以使用共享的Value
:
import multiprocessing as mp
def add_print(num):
"""
https://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing
"""
with lock:
total.value += 1
print(total.value)
def setup(t, l):
global total, lock
total = t
lock = l
if __name__ == "__main__":
total = mp.Value('i', 0)
lock = mp.Lock()
nums = range(20)
pool = mp.Pool(initializer=setup, initargs=[total, lock])
pool.map(add_print, nums)
Run Code Online (Sandbox Code Playgroud)
池初始化程序setup
为每个辅助子进程调用一次。在辅助进程中setup
创建total
一个全局变量,因此total
可以add_print
在辅助调用时在内部进行访问add_print
。
请注意,进程数不应超过计算机拥有的CPU数。如果这样做,多余的子进程将等待CPU可用。因此,processes=20
除非您有20个或更多的CPU,否则不要使用。如果不提供任何processes
参数,multiprocessing
将检测可用的CPU数量,并为您生成具有那么多工作人员的池。任务的数量(例如的长度nums
)通常大大超过CPU的数量。没关系; 当一个工人可用时,任务将由其中一个工人排队并处理。
归档时间: |
|
查看次数: |
1106 次 |
最近记录: |