tra*_*loo 3 java apache-spark apache-spark-sql
在我的项目中,我正在将数据从MongoDB传输到SparkSQL表以进行基于SQL的查询。但是Spark SQL让我创建了临时文件。当我要查询某些内容时,执行时间非常长,因为数据传输和映射操作会花费太多时间。
那么,我可以减少执行时间吗?我可以创建永久性Spark SQL表吗?我可以使用JDBC查询永久表吗?
我要添加代码和执行时间结果。我正在独立模式下执行所有操作。
package com.mongodb.spark.sql;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.bson.BSONObject;
import com.mongodb.hadoop.MongoInputFormat;
import com.mongodb.spark.demo.Observation;
import com.mongodb.spark.demo.Sensor;
import scala.Tuple2;
public class SparkSqlMongo {
public static void main(String[] args) {
Configuration conf = new Configuration();
conf.set("mongo.job.input.format", "com.mongodb.hadoop.MongoInputFormat");
conf.set("mongo.input.uri", "mongodb://localhost:27017/test.observations");
Configuration sensConf = new Configuration();
sensConf.set("mongo.job.input.format", "com.mongodb.hadoop.MongoInputFormat");
sensConf.set("mongo.input.uri", "mongodb://localhost:27017/test.sens");
SparkConf sconf = new SparkConf().setMaster("local[2]").setAppName("SQL DENEME").set("nsmc.connection.host",
"mongodb:");
JavaSparkContext sc = new JavaSparkContext(sconf);
SQLContext sql = new SQLContext(sc);
JavaRDD<Observation> obs = sc.newAPIHadoopRDD(conf, MongoInputFormat.class, Object.class, BSONObject.class)
.map(new Function<Tuple2<Object, BSONObject>, Observation>() {
private static final long serialVersionUID = 1L;
@Override
public Observation call(Tuple2<Object, BSONObject> v1) throws Exception {
int id = (int) v1._2.get("_id");
double value = (double) v1._2.get("Value");
// Date time = (Date) v1._2.get("Time");
int sensor = (int) v1._2.get("SensorId");
int stream = (int) v1._2.get("DataStreamId");
Observation obs = new Observation(id, value, sensor, stream);
return obs;
}
});
DataFrame obsi = sql.createDataFrame(obs, Observation.class);
obsi.registerTempTable("obsi");
JavaRDD<Sensor> sens = sc.newAPIHadoopRDD(sensConf, MongoInputFormat.class, Object.class, BSONObject.class)
.map(new Function<Tuple2<Object, BSONObject>, Sensor>() {
/**
*
*/
private static final long serialVersionUID = 1L;
@Override
public Sensor call(Tuple2<Object, BSONObject> v1) throws Exception {
int id = (int) v1._2.get("_id");
String name = (String) v1._2.get("Name");
String description = (String) v1._2.get("Description");
Sensor s = new Sensor(id, name, description);
System.out.println(s.getName());
return s;
}
});
DataFrame sensi = sql.createDataFrame(sens, Sensor.class);
sensi.registerTempTable("sensi");
sensi.show();
long start = System.currentTimeMillis();
DataFrame obser = sql
.sql("SELECT obsi.value, obsi.id, sensi.name FROM obsi, sensi WHERE obsi.sensorID = sensi.id and sensi.id = 107")
.cache();
long stop = System.currentTimeMillis();
// System.out.println("count ====>>> " + a.toString());
System.out.println("toplam sorgu zamani : " + (stop - start));
;
//
// while(!obser.equals(null)){
// System.out.println(obser);
// }
List<String> names = obser.javaRDD().map(new Function<Row, String>() {
private static final long serialVersionUID = 1L;
public String call(Row row) {
// System.out.println(row);
// System.out.println("value : " + row.getDouble(0) + " id : " +
// row.getInt(1) + " name : " + row.getString(0));
return "Name: " + row;
}
}).collect();
}
Run Code Online (Sandbox Code Playgroud)
}
对于大约5M观察和1K sns数据,所有执行时间约为120秒。我加入了这些表,执行时间非常长且无法接受。
Caching your Table,Dataframe或Rdd来缩短程序执行时间。df.saveAsTable方法,但应通过HiveContext创建数据框。Thrift service然后可以Spark Sql在registers表上执行。