Dim*_*iev 2 python indexing pandas
我有一个带有分层列索引的数据框.现在我想按列分组['X', 'chromosome'].有没有办法在不改变数据框架结构的情况下做到这一点?
import pandas as pd
X = pd.DataFrame.from_dict( {'chromosome':['chr1', 'chr2', 'chr2', 'chr2'],'start':[1,2,1,4]})
Y = pd.DataFrame.from_dict( {'chromosome':['chr1', 'chr2', 'chr2', 'chr3'],'start':[4,5,6,1]})
df_stats = pd.DataFrame.from_dict( {'pvalue':[ 1e-30, 1e-3, 1e-10, 1e-40],'t-stat':[4.4,5.5,6.6, 7.7]})
dd = {'X': X, 'Y': Y, 'STATS':df_stats}
df_qtls = pd.concat(dd.values(), axis = 1, keys= list(dd.keys()) )
df_qtls
for n, g in df_qtls.groupby(['X', 'chromosome'], axis=0):
print(n, g)
Run Code Online (Sandbox Code Playgroud)
导致错误:
...
ValueError: Grouper for 'X' not 1-dimensional
Run Code Online (Sandbox Code Playgroud)
对于多级列,用于('X', 'chromosome')访问特定列.
for n, g in df_qtls.groupby([('X', 'chromosome')]):
print(n)
print(g)
chr1
Y X STATS
chromosome start chromosome start pvalue t-stat
0 chr1 4 chr1 1 1.0000e-30 4.4
chr2
Y X STATS
chromosome start chromosome start pvalue t-stat
1 chr2 5 chr2 2 1.0000e-03 5.5
2 chr2 6 chr2 1 1.0000e-10 6.6
3 chr3 1 chr2 4 1.0000e-40 7.7
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3479 次 |
| 最近记录: |