han*_*sta 3 aggregate r linear-regression
对不起,我对R很新,但我有一个包含多个玩家游戏日志的数据框.我试图获得每个玩家在所有游戏中积分的斜率系数.我已经看到,aggregate可以使用运营商如sum和average,并得到系数掀起了线性回归的非常简单为好.我如何结合这些?
a <- c("player1","player1","player1","player2","player2","player2")
b <- c(1,2,3,4,5,6)
c <- c(15,12,13,4,15,9)
gamelogs <- data.frame(name=a, game=b, pts=c)
Run Code Online (Sandbox Code Playgroud)
我希望这成为:
name pts slope
player1 -.4286
player2 .08242
Run Code Online (Sandbox Code Playgroud)
您也可以与基地做一些魔术lm,一次完成所有操作:
coef(lm(game ~ pts*name - pts, data=gamelogs))[3:4]
coef(lm(game ~ pts:name + name, data=gamelogs))[3:4]
#pts:nameplayer1 pts:nameplayer2
# -0.42857143 0.08241758
Run Code Online (Sandbox Code Playgroud)
作为data.frame:
data.frame(slope=coef(lm(game ~ pts*name - pts, data=gamelogs))[3:4])
# slope
#pts:nameplayer1 -0.42857143
#pts:nameplayer2 0.08241758
Run Code Online (Sandbox Code Playgroud)
请参阅此处以获取有关lm调用中建模的进一步说明:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
http://faculty.chicagobooth.edu/richard.hahn/teaching/FormulaNotation.pdf#2
在这种情况下pts*name扩展到pts + name + pts:name当移除- pts意味着它相当于pts:name + name
你可以做
s <- split(gamelogs, gamelogs$name)
vapply(s, function(x) lm(game ~ pts, x)[[1]][2], 1)
# player1 player2
# -0.42857143 0.08241758
Run Code Online (Sandbox Code Playgroud)
或者
do.call(rbind, lapply(s, function(x) coef(lm(game ~ pts, x))[2]))
# pts
# player1 -0.42857143
# player2 0.08241758
Run Code Online (Sandbox Code Playgroud)
或者如果你想使用dplyr,你可以做
library(dplyr)
models <- group_by(gamelogs, name) %>%
do(mod = lm(game ~ pts, data = .))
cbind(
name = models$name,
do(models, data.frame(slope = coef(.$mod)[2]))
)
# name slope
# 1 player1 -0.42857143
# 2 player2 0.08241758
Run Code Online (Sandbox Code Playgroud)