gra*_*mar 35 r distance latitude-longitude
我有2个列表(list1
,list2
),其中包含各种位置的纬度/经度.一个list(list2
)具有没有的位置名称list1
.
我想要list1中每个点的近似位置.所以我想指出一点list1
,试着寻找最近的点,list2
然后选择那个地方.我重申每一点list1
.它还需要距离(以米为单位)和点的索引(in list1
),因此我可以围绕它构建一些业务规则 - 基本上这些是应该添加到list1
(near_dist
,indx
)的2个新cols .
我正在使用该gdist
功能,但我无法使用它来处理数据帧输入.
示例输入列表:
list1 <- data.frame(longitude = c(80.15998, 72.89125, 77.65032, 77.60599,
72.88120, 76.65460, 72.88232, 77.49186,
72.82228, 72.88871),
latitude = c(12.90524, 19.08120, 12.97238, 12.90927,
19.08225, 12.81447, 19.08241, 13.00984,
18.99347, 19.07990))
list2 <- data.frame(longitude = c(72.89537, 77.65094, 73.95325, 72.96746,
77.65058, 77.66715, 77.64214, 77.58415,
77.76180, 76.65460),
latitude = c(19.07726, 13.03902, 18.50330, 19.16764,
12.90871, 13.01693, 13.00954, 12.92079,
13.02212, 12.81447),
locality = c("A", "A", "B", "B", "C", "C", "C", "D", "D", "E"))
Run Code Online (Sandbox Code Playgroud)
Jaa*_*aap 53
要使用纬度/经度坐标计算两个点之间的地理距离,您可以使用多个公式.该封装geosphere
具有distCosine
,distHaversine
,distVincentySphere
和distVincentyEllipsoid
用于计算的距离.其中,distVincentyEllipsoid
被认为是最准确的,但计算上比其他更密集.
使用这些功能之一,您可以创建距离矩阵.基于该矩阵,您可以locality
根据最短距离which.min
和相应距离分配名称min
(参见答案的最后部分),如下所示:
library(geosphere)
# create distance matrix
mat <- distm(list1[,c('longitude','latitude')], list2[,c('longitude','latitude')], fun=distVincentyEllipsoid)
# assign the name to the point in list1 based on shortest distance in the matrix
list1$locality <- list2$locality[max.col(-mat)]
Run Code Online (Sandbox Code Playgroud)
这给了:
> list1
longitude latitude locality
1 80.15998 12.90524 D
2 72.89125 19.08120 A
3 77.65032 12.97238 C
4 77.60599 12.90927 D
5 72.88120 19.08225 A
6 76.65460 12.81447 E
7 72.88232 19.08241 A
8 77.49186 13.00984 D
9 72.82228 18.99347 A
10 72.88871 19.07990 A
Run Code Online (Sandbox Code Playgroud)
另一种可能性是locality
根据locality
s 的平均经度和纬度值分配list2
:
library(dplyr)
list2a <- list2 %>% group_by(locality) %>% summarise_each(funs(mean)) %>% ungroup()
mat2 <- distm(list1[,c('longitude','latitude')], list2a[,c('longitude','latitude')], fun=distVincentyEllipsoid)
list1 <- list1 %>% mutate(locality2 = list2a$locality[max.col(-mat2)])
Run Code Online (Sandbox Code Playgroud)
或者data.table
:
library(data.table)
list2a <- setDT(list2)[,lapply(.SD, mean), by=locality]
mat2 <- distm(setDT(list1)[,.(longitude,latitude)], list2a[,.(longitude,latitude)], fun=distVincentyEllipsoid)
list1[, locality2 := list2a$locality[max.col(-mat2)] ]
Run Code Online (Sandbox Code Playgroud)
这给了:
> list1
longitude latitude locality locality2
1 80.15998 12.90524 D D
2 72.89125 19.08120 A B
3 77.65032 12.97238 C C
4 77.60599 12.90927 D C
5 72.88120 19.08225 A B
6 76.65460 12.81447 E E
7 72.88232 19.08241 A B
8 77.49186 13.00984 D C
9 72.82228 18.99347 A B
10 72.88871 19.07990 A B
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,这导致大多数(10个中的7个)场合被分配给另一个locality
.
您可以添加距离:
list1$near_dist <- apply(mat2, 1, min)
Run Code Online (Sandbox Code Playgroud)
或其他方法max.col
(很可能更快):
list1$near_dist <- mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)]
# or using dplyr
list1 <- list1 %>% mutate(near_dist = mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)])
# or using data.table (if not already a data.table, convert it with 'setDT(list1)' )
list1[, near_dist := mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)] ]
Run Code Online (Sandbox Code Playgroud)
结果:
> list1
longitude latitude locality locality2 near_dist
1: 80.15998 12.90524 D D 269966.8970
2: 72.89125 19.08120 A B 65820.2047
3: 77.65032 12.97238 C C 739.1885
4: 77.60599 12.90927 D C 9209.8165
5: 72.88120 19.08225 A B 66832.7223
6: 76.65460 12.81447 E E 0.0000
7: 72.88232 19.08241 A B 66732.3127
8: 77.49186 13.00984 D C 17855.3083
9: 72.82228 18.99347 A B 69456.3382
10: 72.88871 19.07990 A B 66004.9900
Run Code Online (Sandbox Code Playgroud)
小智 7
感谢 Martin Haringa 提供的这个解决方案,当您需要通过遍历Mark Needham 博客上的数据框来执行此功能时,可以更轻松地实现此方法
library(dplyr)
library(geosphere)
df %>%
rowwise() %>%
mutate(newcolumn_distance = distHaversine(c(df$long1, df$lat1),
c(df$long2, df$lat2)))
Run Code Online (Sandbox Code Playgroud)
我在现实世界数据集中的大样本上分别使用 distm 和 distHaversine 这两个函数进行了测试,并且 distHaversine 似乎比 distm 函数快得多。我很惊讶,因为我认为这两者只是两种格式的相同功能。
归档时间: |
|
查看次数: |
23548 次 |
最近记录: |