data.frame
如果他们的任何成员符合条件,我有一个我想删除整个团体的地方.
在第一个示例中,如果值是数字,则条件是NA
下面的代码.
df <- structure(list(world = c(1, 2, 3, 3, 2, NA, 1, 2, 3, 2), place = c(1,
1, 2, 2, 3, 3, 1, 2, 3, 1), group = c(1, 1, 1, 2, 2, 2, 3,
3, 3, 3)), .Names = c("world", "place", "group"), row.names = c(NA,
-10L), class = "data.frame")
ans <- ddply(df, . (group), summarize, code=mean(world))
ans$code[is.na(ans$code)] <- 0
ans2 <- merge(df,ans)
final.ans <- ans2[ans2$code !=0,]
Run Code Online (Sandbox Code Playgroud)
然而,这种ddply
动作与NA
如果条件是除"值将无法正常工作NA
",或者如果值是非数字.
例如,如果我想删除任何具有世界值成员的组AF
(如下面的data.frame中),那么这个ddply
技巧就行不通了.
df2 <-structure(list(world = structure(c(1L, 2L, 3L, 3L, 3L, 5L, 1L,
4L, 2L, 4L), .Label = c("AB", "AC", "AD", "AE", "AF"), class = "factor"),
place = c(1, 1, 2, 2, 3, 3, 1, 2, 3, 1), group = c(1,
1, 1, 2, 2, 2, 3, 3, 3, 3)), .Names = c("world", "place",
"group"), row.names = c(NA, -10L), class = "data.frame")
Run Code Online (Sandbox Code Playgroud)
我可以设想一个for循环,其中为每个组检查每个成员的值,如果满足条件,则code
可以填充列,然后可以基于该代码创建子集.
但是,也许有一种矢量化的方式来做到这一点?
Ste*_*pré 15
尝试
library(dplyr)
df2 %>%
group_by(group) %>%
filter(!any(world == "AF"))
Run Code Online (Sandbox Code Playgroud)
或者按照@akrun的说法:
setDT(df2)[, if(!any(world == "AF")) .SD, group]
要么
setDT(df2)[, if(all(world != "AF")) .SD, group]
这使:
#Source: local data frame [7 x 3]
#Groups: group
#
# world place group
#1 AB 1 1
#2 AC 1 1
#3 AD 2 1
#4 AB 1 3
#5 AE 2 3
#6 AC 3 3
#7 AE 1 3
Run Code Online (Sandbox Code Playgroud)
备用data.table解决方案:
setDT(df2)
df2[!(group %in% df2[world == "AF",group])]
Run Code Online (Sandbox Code Playgroud)
得到:
world place group
1: AB 1 1
2: AC 1 1
3: AD 2 1
4: AB 1 3
5: AE 2 3
6: AC 3 3
7: AE 1 3
Run Code Online (Sandbox Code Playgroud)
使用键我们可以更快一点:
setkey(df2,group)
df2[!J((df2[world == "AF",group]))]
Run Code Online (Sandbox Code Playgroud)
基础包:
df2[ df2$group != df2[ df2$world == 'AF', "group" ], ]
Run Code Online (Sandbox Code Playgroud)
输出:
world place group
1 AB 1 1
2 AC 1 1
3 AD 2 1
7 AB 1 3
8 AE 2 3
9 AC 3 3
10 AE 1 3
Run Code Online (Sandbox Code Playgroud)
使用sqldf
:
library(sqldf)
sqldf("SELECT df2.world, df2.place, [group] FROM df2
LEFT JOIN
(SELECT * FROM df2 WHERE world LIKE 'AF') AS t
USING([group])
WHERE t.world IS NULL")
Run Code Online (Sandbox Code Playgroud)
输出:
world place group
1 AB 1 1
2 AC 1 1
3 AD 2 1
4 AB 1 3
5 AE 2 3
6 AC 3 3
7 AE 1 3
Run Code Online (Sandbox Code Playgroud)