Sel*_*lah 15 python numpy correlation pandas
我正在尝试计算几个值的相关矩阵.这些值包括一些'nan'值.我正在使用numpy.corrcoef.对于输出相关矩阵的元素(i,j),我希望使用对于变量i和变量j都存在的所有值来计算相关性.
这就是我现在拥有的:
In[20]: df_counties = pd.read_sql("SELECT Median_Age, Rpercent_2008, overall_LS, population_density FROM countyVotingSM2", db_eng)
In[21]: np.corrcoef(df_counties, rowvar = False)
Out[21]:
array([[ 1. , nan, nan, -0.10998411],
[ nan, nan, nan, nan],
[ nan, nan, nan, nan],
[-0.10998411, nan, nan, 1. ]])
Run Code Online (Sandbox Code Playgroud)
太多的南瓜:(
Jia*_* Li 25
其中一个主要特点pandas是NaN友好.要计算相关矩阵,只需调用即可df_counties.corr().下面是展示一个例子df.corr()是NaN宽容,而np.corrcoef不是.
import pandas as pd
import numpy as np
# data
# ==============================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(100,5), columns=list('ABCDE'))
df[df < 0] = np.nan
df
A B C D E
0 1.7641 0.4002 0.9787 2.2409 1.8676
1 NaN 0.9501 NaN NaN 0.4106
2 0.1440 1.4543 0.7610 0.1217 0.4439
3 0.3337 1.4941 NaN 0.3131 NaN
4 NaN 0.6536 0.8644 NaN 2.2698
5 NaN 0.0458 NaN 1.5328 1.4694
6 0.1549 0.3782 NaN NaN NaN
7 0.1563 1.2303 1.2024 NaN NaN
8 NaN NaN NaN 1.9508 NaN
9 NaN NaN 0.7775 NaN NaN
.. ... ... ... ... ...
90 NaN 0.8202 0.4631 0.2791 0.3389
91 2.0210 NaN NaN 0.1993 NaN
92 NaN NaN NaN 0.1813 NaN
93 2.4125 NaN NaN NaN 0.2515
94 NaN NaN NaN NaN 1.7389
95 0.9944 1.3191 NaN 1.1286 0.4960
96 0.7714 1.0294 NaN NaN 0.8626
97 NaN 1.5133 0.5531 NaN 0.2205
98 NaN NaN 1.1003 1.2980 2.6962
99 NaN NaN NaN NaN NaN
[100 rows x 5 columns]
# calculations
# ================================
df.corr()
A B C D E
A 1.0000 0.2718 0.2678 0.2822 0.1016
B 0.2718 1.0000 -0.0692 0.1736 -0.1432
C 0.2678 -0.0692 1.0000 -0.3392 0.0012
D 0.2822 0.1736 -0.3392 1.0000 0.1562
E 0.1016 -0.1432 0.0012 0.1562 1.0000
np.corrcoef(df, rowvar=False)
array([[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan]])
Run Code Online (Sandbox Code Playgroud)
ber*_*ers 16
这将起作用,使用掩码数组 numpy模块:
import numpy as np
import numpy.ma as ma
A = [1, 2, 3, 4, 5, np.NaN]
B = [2, 3, 4, 5.25, np.NaN, 100]
print(ma.corrcoef(ma.masked_invalid(A), ma.masked_invalid(B)))
Run Code Online (Sandbox Code Playgroud)
它输出:
[[1.0 0.99838143945703]
[0.99838143945703 1.0]]
Run Code Online (Sandbox Code Playgroud)
在此处阅读更多信息:https : //docs.scipy.org/doc/numpy/reference/maskedarray.generic.html