Pau*_*iss 2 c++ trigonometry cmath
我确信这是一个非常愚蠢的问题,但是当我向c/c ++的cos()和sin()函数传递180度的角度时,我似乎收到了一个不正确的值.我知道它应该是:0.0547的罪和0.99的cos但我得到了3.5897934739308216e-009的罪和-1.00000的cos
我的代码是:
double radians = DegreesToRadians( angle );
double cosValue = cos( radians );
double sinValue = sin( radians );
Run Code Online (Sandbox Code Playgroud)
DegreesToRadians()是:
double DegreesToRadians( double degrees )
{
return degrees * PI / 180;
}
Run Code Online (Sandbox Code Playgroud)
谢谢 :)
首先,180度的余弦应该等于-1,所以你得到的结果是正确的.
其次,在使用etc函数时,有时无法获得精确值,sin/cos/tan因为总是得到最接近正确值的结果.在您的情况下,您获得的值sin最接近零.
的价值sin(PI),你有从零只有在不同第九浮点后(!)的数字.3.5897934739308216e-009几乎等于0.000000004,几乎等于零.
C/C++提供sin(a),cos(a),tan(a)等,其需要具有一个参数函数弧度单位而非度. 在转换结果四舍五入时double DegreesToRadians(d)执行接近但近似的转换.机器也M_PI很接近,但与数学无理性的值不同?.
OP的代码180传递给 DegreesToRadians(d)然后sin()/cos()给出的结果与预期不同,因为舍入,有限精度double()和可能的弱值PI.
一种改进是在调用trig函数之前以度为单位执行参数减少.下面将角度首先降低到-45°到45°范围然后调用sin().这将确保产生大的价值N在sind(90.0*N) --> -1.0, 0.0, 1.0..注意:sind(360.0*N +/- 30.0)可能不完全相同+/-0.5.需要一些额外的考虑.
#include <math.h>
#include <stdio.h>
static double d2r(double d) {
return (d / 180.0) * ((double) M_PI);
}
double sind(double x) {
if (!isfinite(x)) {
return sin(x);
}
if (x < 0.0) {
return -sind(-x);
}
int quo;
double x90 = remquo(fabs(x), 90.0, &quo);
switch (quo % 4) {
case 0:
// Use * 1.0 to avoid -0.0
return sin(d2r(x90)* 1.0);
case 1:
return cos(d2r(x90));
case 2:
return sin(d2r(-x90) * 1.0);
case 3:
return -cos(d2r(x90));
}
return 0.0;
}
int main(void) {
int i;
for (i = -360; i <= 360; i += 15) {
printf("sin() of %.1f degrees is % .*e\n", 1.0 * i, DBL_DECIMAL_DIG - 1,
sin(d2r(i)));
printf("sind() of %.1f degrees is % .*e\n", 1.0 * i, DBL_DECIMAL_DIG - 1,
sind(i));
}
return 0;
}
Run Code Online (Sandbox Code Playgroud)
产量
sin() of -360.0 degrees is 2.4492935982947064e-16
sind() of -360.0 degrees is -0.0000000000000000e+00 // Exact
sin() of -345.0 degrees is 2.5881904510252068e-01 // 76-68 = 8 away
// 2.5881904510252076e-01
sind() of -345.0 degrees is 2.5881904510252074e-01 // 76-74 = 2 away
sin() of -330.0 degrees is 5.0000000000000044e-01 // 44 away
// 0.5 5.0000000000000000e-01
sind() of -330.0 degrees is 4.9999999999999994e-01 // 6 away
sin() of -315.0 degrees is 7.0710678118654768e-01 // 68-52 = 16 away
// square root 0.5 --> 7.0710678118654752e-01
sind() of -315.0 degrees is 7.0710678118654746e-01 // 52-46 = 6 away
sin() of -300.0 degrees is 8.6602540378443860e-01
sind() of -300.0 degrees is 8.6602540378443871e-01
sin() of -285.0 degrees is 9.6592582628906842e-01
sind() of -285.0 degrees is 9.6592582628906831e-01
sin() of -270.0 degrees is 1.0000000000000000e+00 // Exact
sind() of -270.0 degrees is 1.0000000000000000e+00 // Exact
...
Run Code Online (Sandbox Code Playgroud)
将app转换为64位时,我遇到与OP相同的问题.
我的解决方案是使用新的math.h函数__cospi()和__sinpi().
性能与cos()和sin()相似(甚至快1%).
// cos(M_PI * -90.0 / 180.0) returns 0.00000000000000006123233995736766
//__cospi( -90.0 / 180.0) returns 0.0, as it should
// #define degree2rad 3.14159265359/180
// #define degree2rad M_PI/ 180.0
// double rot = -degree2rad * ang;
// double sn = sin(rot);
// double cs = cos(rot);
double rot = -ang / 180.0;
double sn = __sinpi(rot);
double cs = __cospi(rot);
Run Code Online (Sandbox Code Playgroud)
从math.h:
/* __sinpi(x) returns the sine of pi times x; __cospi(x) and __tanpi(x) return
the cosine and tangent, respectively. These functions can produce a more
accurate answer than expressions of the form sin(M_PI * x) because they
avoid any loss of precision that results from rounding the result of the
multiplication M_PI * x. They may also be significantly more efficient in
some cases because the argument reduction for these functions is easier
to compute. Consult the man pages for edge case details. */
Run Code Online (Sandbox Code Playgroud)