apa*_*gin 38 java performance jvm
另一个SO成员已经提出了这个问题,但令人失望地被删除了.评论说测量是有缺陷的,没有意义.
但是我能够用JMH下的一个小基准重现原始问题:
package bench;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.*;
import org.openjdk.jmh.runner.options.*;
import java.util.concurrent.*;
@State(Scope.Benchmark)
public class LoopInc {
private int getValue() {
return ThreadLocalRandom.current().nextInt(2);
}
@Benchmark
public int directInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
switch (getValue()) {
case 0:
break;
case 1:
result++;
break;
}
}
return result;
}
@Benchmark
public int indirectInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
boolean incr = false;
switch (getValue()) {
case 0:
break;
case 1:
incr = true;
break;
}
if (incr) {
result++;
}
}
return result;
}
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include("bench.LoopInc.*")
.warmupIterations(5)
.measurementIterations(10)
.forks(3)
.timeUnit(TimeUnit.MILLISECONDS)
.build();
new Runner(options).run();
}
}
Run Code Online (Sandbox Code Playgroud)
基准测试显示indirectInc工作速度提高了3倍,尽管"优化"并不明显.人们会认为它indirectInc应该工作得慢一点,因为它涉及额外的中间操作.
Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 30 127,301 ± 0,202 ops/ms
LoopInc.indirectInc thrpt 30 378,147 ± 1,144 ops/ms
Run Code Online (Sandbox Code Playgroud)
java version "1.8.0_51"
Java(TM) SE Runtime Environment (build 1.8.0_51-b16)
Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode)
Run Code Online (Sandbox Code Playgroud)
是什么导致JIT编译indirectInc比类似更好directInc?
Ale*_*lev 55
好的,这就是你如何处理这些事情.
尝试重现它.好的,它再现了:
Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 175.678 ± 1.118 ops/ms
LoopInc.indirectInc thrpt 15 641.413 ± 9.722 ops/ms
Run Code Online (Sandbox Code Playgroud)尝试查看生成的程序集-prof perfasm.简而言之,它产生了大量生成的代码,因此我们可能希望限制循环展开.但是,它可能会影响性能,并且几乎可以成为原因.所以,让我们重新开始吧-XX:LoopUnrollLimit=1.好吧,得分较低,但差异仍然存在,非常好:
Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 161.147 ± 6.101 ops/ms
LoopInc.indirectInc thrpt 15 489.430 ± 1.698 ops/ms
Run Code Online (Sandbox Code Playgroud)再看看生成的代码,仍然没有任何东西突然出现在我们眼前.嗯,这看起来很有趣.让我们正确地做到这一点.我们可以描述工作量吗?当然,我们可以借助于-prof perfnorm每个基准操作规范化硬件计数器.让我们来看看:
Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 161.875 ± 3.038 ops/ms
LoopInc.directInc:·CPI thrpt 3 0.967 ± 0.196 #/op
LoopInc.directInc:·L1-dcache-load-misses thrpt 3 0.394 ± 3.663 #/op
LoopInc.directInc:·L1-dcache-loads thrpt 3 2149.594 ± 228.166 #/op
LoopInc.directInc:·L1-dcache-store-misses thrpt 3 0.114 ± 1.001 #/op
LoopInc.directInc:·L1-dcache-stores thrpt 3 1073.666 ± 96.066 #/op
LoopInc.directInc:·L1-icache-load-misses thrpt 3 0.965 ± 22.984 #/op
LoopInc.directInc:·LLC-loads thrpt 3 0.204 ± 2.763 #/op
LoopInc.directInc:·LLC-stores thrpt 3 0.060 ± 0.633 #/op
LoopInc.directInc:·branch-misses thrpt 3 536.068 ± 43.293 #/op
LoopInc.directInc:·branches thrpt 3 3728.890 ± 220.539 #/op
LoopInc.directInc:·cycles thrpt 3 26219.146 ± 6287.590 #/op
LoopInc.directInc:·dTLB-load-misses thrpt 3 0.063 ± 0.124 #/op
LoopInc.directInc:·dTLB-loads thrpt 3 2136.942 ± 165.990 #/op
LoopInc.directInc:·dTLB-store-misses thrpt 3 0.022 ± 0.029 #/op
LoopInc.directInc:·dTLB-stores thrpt 3 1084.787 ± 417.281 #/op
LoopInc.directInc:·iTLB-load-misses thrpt 3 0.081 ± 0.333 #/op
LoopInc.directInc:·iTLB-loads thrpt 3 3.623 ± 19.955 #/op
LoopInc.directInc:·instructions thrpt 3 27114.052 ± 1843.720 #/op
LoopInc.indirectInc thrpt 15 489.164 ± 2.692 ops/ms
LoopInc.indirectInc:·CPI thrpt 3 0.281 ± 0.015 #/op
LoopInc.indirectInc:·L1-dcache-load-misses thrpt 3 0.503 ± 9.071 #/op
LoopInc.indirectInc:·L1-dcache-loads thrpt 3 2149.806 ± 369.040 #/op
LoopInc.indirectInc:·L1-dcache-store-misses thrpt 3 0.167 ± 1.370 #/op
LoopInc.indirectInc:·L1-dcache-stores thrpt 3 1073.895 ± 186.741 #/op
LoopInc.indirectInc:·L1-icache-load-misses thrpt 3 0.313 ± 1.275 #/op
LoopInc.indirectInc:·branch-misses thrpt 3 1.102 ± 0.375 #/op
LoopInc.indirectInc:·branches thrpt 3 2143.670 ± 228.475 #/op
LoopInc.indirectInc:·cycles thrpt 3 8701.665 ± 706.183 #/op
LoopInc.indirectInc:·dTLB-load-misses thrpt 3 0.020 ± 0.301 #/op
LoopInc.indirectInc:·dTLB-loads thrpt 3 2141.965 ± 135.852 #/op
LoopInc.indirectInc:·dTLB-store-misses thrpt 3 0.002 ± 0.029 #/op
LoopInc.indirectInc:·dTLB-stores thrpt 3 1070.376 ± 81.445 #/op
LoopInc.indirectInc:·iTLB-load-misses thrpt 3 0.007 ± 0.135 #/op
LoopInc.indirectInc:·iTLB-loads thrpt 3 0.310 ± 5.768 #/op
LoopInc.indirectInc:·instructions thrpt 3 30968.207 ± 3627.540 #/op
Run Code Online (Sandbox Code Playgroud)
哦,两个基准都有相当数量的指令.较慢的一个需要更多的周期(这就是为什么CPI也不理想directInc; indirectInc然而,产生接近理想的CPI).如果仔细观察可能的原因:没有很多缓存未命中,没有很多TLB未命中,但缓慢的基准测试有很多分支未命中.AHA!现在我们知道在生成的代码中要查看什么.
让我们再看看生成的代码.-prof perfasm方便突出跳跃.然后你会看到这......
directInc:
?? 0x00007fa0a82a50ff: jmp 0x00007fa0a82a5116
11.39% 16.90% ?? ? 0x00007fa0a82a5101: inc %edx ;*iinc
?? ? ; - org.openjdk.LoopInc::directInc@46 (line 18)
12.52% 23.11% ?? ??? 0x00007fa0a82a5103: mov %r10,0xe8(%r11) ;*invokevirtual putLong
?? ??? ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
12.00% 8.14% ?? ??? 0x00007fa0a82a510a: inc %r8d ;*iinc
?? ??? ; - org.openjdk.LoopInc::directInc@46 (line 18)
0.03% 0.03% ?? ??? 0x00007fa0a82a510d: cmp $0x3e8,%r8d
?? ??? 0x00007fa0a82a5114: jge 0x00007fa0a82a50c7 ;*aload_0
? ??? ; - org.openjdk.LoopInc::directInc@11 (line 19)
0.80% 0.91% ? ??? 0x00007fa0a82a5116: mov 0xf0(%r11),%r10d ;*invokevirtual getInt
??? ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
4.28% 1.23% ??? 0x00007fa0a82a511d: test %r10d,%r10d
???? 0x00007fa0a82a5120: je 0x00007fa0a82a517b ;*ifne
???? ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
2.11% 0.01% ???? 0x00007fa0a82a5122: movabs $0x9e3779b97f4a7c15,%r10
0.01% 0.07% ???? 0x00007fa0a82a512c: add 0xe8(%r11),%r10 ;*ladd
???? ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
7.73% 1.89% ???? 0x00007fa0a82a5133: mov %r10,%r9
1.21% 1.84% ???? 0x00007fa0a82a5136: shr $0x21,%r9
1.90% 0.03% ???? 0x00007fa0a82a513a: xor %r10,%r9
2.02% 0.03% ???? 0x00007fa0a82a513d: movabs $0xff51afd7ed558ccd,%rcx
0.94% 1.82% ???? 0x00007fa0a82a5147: imul %rcx,%r9 ;*lmul
???? ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
7.01% 2.40% ???? 0x00007fa0a82a514b: mov %r9,%rcx
???? 0x00007fa0a82a514e: shr $0x21,%rcx
1.89% 0.70% ???? 0x00007fa0a82a5152: xor %r9,%rcx
3.11% 2.55% ???? 0x00007fa0a82a5155: movabs $0xc4ceb9fe1a85ec53,%r9
0.99% 1.50% ???? 0x00007fa0a82a515f: imul %r9,%rcx
7.66% 2.89% ???? 0x00007fa0a82a5163: shr $0x20,%rcx
3.70% 1.97% ???? 0x00007fa0a82a5167: mov %ecx,%r9d
0.11% ???? 0x00007fa0a82a516a: and $0x1,%r9d ;*iand
???? ; - java.util.concurrent.ThreadLocalRandom::nextInt@34 (line 356)
3.76% 11.13% ???? 0x00007fa0a82a516e: cmp $0x1,%r9d
???? 0x00007fa0a82a5172: je 0x00007fa0a82a5101
10.48% 16.62% ? ?? 0x00007fa0a82a5174: test %r9d,%r9d
? ?? 0x00007fa0a82a5177: je 0x00007fa0a82a5103 ;*lookupswitch
? ? ; - org.openjdk.LoopInc::directInc@15 (line 19)
? ? 0x00007fa0a82a5179: jmp 0x00007fa0a82a5103 ;*aload_0
? ; - org.openjdk.LoopInc::directInc@11 (line 19)
? 0x00007fa0a82a517b: mov $0xffffff5d,%esi
Run Code Online (Sandbox Code Playgroud)
indirectInc:
0.01% 0.01% ? 0x00007f65588d8260: mov %edx,%r9d
0.01% ? 0x00007f65588d8263: nopw 0x0(%rax,%rax,1)
11.99% 11.38% ? 0x00007f65588d826c: data16 data16 xchg %ax,%ax ;*iconst_0
? ; - org.openjdk.LoopInc::indirectInc@11 (line 34)
? 0x00007f65588d8270: mov 0xf0(%r8),%r10d ;*invokevirtual getInt
? ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
? 0x00007f65588d8277: test %r10d,%r10d
? 0x00007f65588d827a: je 0x00007f65588d8331 ;*ifne
? ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
0.01% ? 0x00007f65588d8280: movabs $0x9e3779b97f4a7c15,%r10
11.80% 11.49% ? 0x00007f65588d828a: add 0xe8(%r8),%r10 ;*ladd
? ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
0.01% 0.01% ? 0x00007f65588d8291: mov %r10,0xe8(%r8) ;*invokevirtual putLong
? ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
? 0x00007f65588d8298: mov %r9d,%edx
0.01% 0.01% ? 0x00007f65588d829b: inc %edx
11.12% 12.40% ? 0x00007f65588d829d: mov %r10,%rcx
0.01% ? 0x00007f65588d82a0: shr $0x21,%rcx
0.03% ? 0x00007f65588d82a4: xor %r10,%rcx
0.06% 0.03% ? 0x00007f65588d82a7: movabs $0xff51afd7ed558ccd,%r10
12.38% 13.94% ? 0x00007f65588d82b1: imul %r10,%rcx ;*lmul
? ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
0.03% 0.01% ? 0x00007f65588d82b5: mov %rcx,%r10
? 0x00007f65588d82b8: shr $0x21,%r10
0.03% ? 0x00007f65588d82bc: xor %rcx,%r10
11.43% 12.62% ? 0x00007f65588d82bf: movabs $0xc4ceb9fe1a85ec53,%rcx
0.01% ? 0x00007f65588d82c9: imul %rcx,%r10
0.34% 0.30% ? 0x00007f65588d82cd: shr $0x20,%r10
0.85% 0.76% ? 0x00007f65588d82d1: mov %r10d,%r10d
11.81% 11.51% ? 0x00007f65588d82d4: and $0x1,%r10d
2.16% 1.78% ? 0x00007f65588d82d8: cmp $0x1,%r10d
3.45% 3.00% ? 0x00007f65588d82dc: cmovne %r9d,%edx <----- HERE IT IS
17.55% 15.86% ? 0x00007f65588d82e0: inc %r11d ;*iinc
? ; - org.openjdk.LoopInc::indirectInc@56 (line 33)
? 0x00007f65588d82e3: cmp $0x3e8,%r11d
? 0x00007f65588d82ea: jl 0x00007f65588d8260 ;*if_icmpge
; - org.openjdk.LoopInc::indirectInc@8 (line 33)
Run Code Online (Sandbox Code Playgroud)
请注意,cmovne而不是jmp- 这就是为什么我们有更多"可预测"的分支.HotSpot对分支进行分析,并在分支轮廓分支非常平坦时发出条件移动.换句话说,通过为条件移动的额外延迟付出一点,躲避非常可能的分支错误预测.但是,在这种情况下,switch是特殊的:它有两个以上的替代品(0,1和"无").这就是为什么,我推测,result增量不会被折叠成cmov.(一般来说,HotSpot可以result在"默认"中存储零,但是它吹了,哦,好吧)
为了证实这个假设,让我们提出一个directCompleteInc案例,我们仍在使用switch,但现在涵盖所有案例:
@Benchmark
public int directCompleteInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
switch (getValue()) {
case 1:
result++;
break;
default:
break;
}
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
...并测量它,这次没有任何选择,如OP做的:
Benchmark Mode Cnt Score Error Units
LoopInc.directCompleteInc thrpt 5 644.414 ± 0.371 ops/ms
LoopInc.directInc thrpt 5 174.974 ± 0.103 ops/ms
LoopInc.indirectInc thrpt 5 644.015 ± 0.533 ops/ms
Run Code Online (Sandbox Code Playgroud)
那里.
确认directCompleteInc使用cmov用-prof perfasm.确实如此.
喝了