python:使用.iterrows()创建列

cit*_*ams 12 python pandas

我试图使用循环函数来创建一个矩阵,表明产品是否在特定的一周内被看到.

df中的每一行(代表产品)都有一个close_date(产品关闭的日期)和一个week_diff(产品列出的周数).

import pandas
mydata = [{'subid' : 'A', 'Close_date_wk': 25, 'week_diff':3},
          {'subid' : 'B', 'Close_date_wk': 26, 'week_diff':2},
          {'subid' : 'C', 'Close_date_wk': 27, 'week_diff':2},]
df = pandas.DataFrame(mydata)
Run Code Online (Sandbox Code Playgroud)

我的目标是查看每个date_range中为每种产品列出的替代产品数量

我已经设置了以下循环:

for index, row in df.iterrows():
    i = 0
    max_range = row['Close_date_wk']    
    min_range = int(row['Close_date_wk'] - row['week_diff'])
    for i in range(min_range,max_range):
        col_head = 'job_week_'  +  str(i)
        row[col_head] = 1
Run Code Online (Sandbox Code Playgroud)

你能帮忙解释为什么"row [col_head] = 1"行既没有添加列,也没有为该行的该列添加值.

例如,如果:

row A has date range 1,2,3 
row B has date range 2,3  
row C has date range 3,4,5'
Run Code Online (Sandbox Code Playgroud)

那么理想情况下我想结束

row A has 0 alternative products in week 1
          1 alternative products in week 2
          2 alternative products in week 3
row B has 1 alternative products in week 2
          2 alternative products in week 3
&c..
Run Code Online (Sandbox Code Playgroud)

EdC*_*ica 22

您不能使用变异的DF row此处添加新列,你要么是指原来的DF或使用.loc,.iloc.ix,例如:

In [29]:

df = pd.DataFrame(columns=list('abc'), data = np.random.randn(5,3))
df
Out[29]:
          a         b         c
0 -1.525011  0.778190 -1.010391
1  0.619824  0.790439 -0.692568
2  1.272323  1.620728  0.192169
3  0.193523  0.070921  1.067544
4  0.057110 -1.007442  1.706704
In [30]:

for index,row in df.iterrows():
    df.loc[index,'d'] = np.random.randint(0, 10)
df
Out[30]:
          a         b         c  d
0 -1.525011  0.778190 -1.010391  9
1  0.619824  0.790439 -0.692568  9
2  1.272323  1.620728  0.192169  1
3  0.193523  0.070921  1.067544  0
4  0.057110 -1.007442  1.706704  9
Run Code Online (Sandbox Code Playgroud)

您可以修改现有行:

In [31]:
# reset the df by slicing
df = df[list('abc')]
for index,row in df.iterrows():
    row['b'] = np.random.randint(0, 10)
df
Out[31]:
          a  b         c
0 -1.525011  8 -1.010391
1  0.619824  2 -0.692568
2  1.272323  8  0.192169
3  0.193523  2  1.067544
4  0.057110  3  1.706704
Run Code Online (Sandbox Code Playgroud)

但是使用row添加新列将不起作用:

In [35]:

df = df[list('abc')]
for index,row in df.iterrows():
    row['d'] = np.random.randint(0,10)
df
Out[35]:
          a  b         c
0 -1.525011  8 -1.010391
1  0.619824  2 -0.692568
2  1.272323  8  0.192169
3  0.193523  2  1.067544
4  0.057110  3  1.706704
Run Code Online (Sandbox Code Playgroud)