Car*_*bon 5 python list-comprehension
使用下面的示例,我们可以看到x.giveMyNum()将被调用4次 - 3次以检查myNum的值,并且一次构造要返回的列表.您可能希望它只被调用3次,因为它是一个纯函数,它的值不会改变.
列表理解版本:
class test(object):
def __init__(self,myNum):
self.myNum=myNum
def giveMyNum(self):
print "giving"
return self.myNum
q=[test(x) for x in range(3)]
print [x.giveMyNum() for x in q if x.giveMyNum()>1]
Run Code Online (Sandbox Code Playgroud)
我知道你可以做这样的事情来解决它:
ret=[]
for x in q:
k=x.giveMyNum()
if k>1:
ret.append(k)
Run Code Online (Sandbox Code Playgroud)
但有没有办法阻止列表理解中的额外调用?
我不需要保留中间值.
你可以将它与生成器结合起来,但我会坚持使用常规循环。
print([n for n in (x.giveMyNum() for x in q) if n > 1 ])
Run Code Online (Sandbox Code Playgroud)
如果你喜欢函数式代码,你可以itertools.imap使用 python2 来映射或:
print([n for n in map(test.giveMyNum, q) if n > 1 ])
Run Code Online (Sandbox Code Playgroud)
使用 python2 和 imap 比 gen exp 更快:
In [8]: q = [test(x) for x in range(10000)]
In [9]: timeit [ n for n in imap(test.giveMyNum, q) if n > 1]
1000 loops, best of 3: 1.94 ms per loop
In [10]: timeit [n for n in (x.giveMyNum() for x in q) if n > 1 ]
100 loops, best of 3: 2.56 ms per loop
Run Code Online (Sandbox Code Playgroud)
使用 python3 地图也更快:
In [2]: timeit [ n for n in map(test.giveMyNum, q) if n > 1]
100 loops, best of 3: 2.23 ms per loop
In [3]: timeit [n for n in (x.giveMyNum() for x in q) if n > 1 ]
100 loops, best of 3: 2.93 ms per loop
Run Code Online (Sandbox Code Playgroud)
常规循环和调用方法的时机:
In [8]: timeit [x.giveMyNum() for x in q if x.giveMyNum()>1]
100 loops, best of 3: 3.59 ms per loop
In [9]: %%timeit
ret=[]
for x in q:
k=x.giveMyNum()
if k>1:
ret.append(k)
...:
100 loops, best of 3: 2.67 ms per loop
Run Code Online (Sandbox Code Playgroud)
Python3:
In [2]: %%timeit
ret=[]
for x in q:
k=x.giveMyNum()
if k>1:
ret.append(k)
...:
100 loops, best of 3: 2.84 ms per loop
In [3]: timeit [x.giveMyNum() for x in q if x.giveMyNum()>1]
100 loops, best of 3: 4.08 ms per loop
Run Code Online (Sandbox Code Playgroud)