Eus*_*una 8 python machine-learning scikit-learn supervised-learning
我正在使用Scikit学习,我需要从这样的混淆矩阵计算真阳性(TP),假阳性(FP),真阴性(TN)和假阴性(FN):
[[2 0 3 4]
[0 4 5 1]
[1 0 3 2]
[5 0 0 4]]
Run Code Online (Sandbox Code Playgroud)
我知道如何计算TP,FP和FN,但我不知道如何获得TN.有人能告诉我吗?
我认为你应该以一对一的方式处理这种多类别的分类(因此每个2x2表i测量二进制分类问题的性能,即每个OB是否属于标签i).因此,您可以计算每个标签的TP,FP,FN,TN.
import numpy as np
confusion_matrix = np.array([[2,0,3,4],
[0,4,5,1],
[1,0,3,2],
[5,0,0,4]])
def process_cm(confusion_mat, i=0, to_print=True):
# i means which class to choose to do one-vs-the-rest calculation
# rows are actual obs whereas columns are predictions
TP = confusion_mat[i,i] # correctly labeled as i
FP = confusion_mat[:,i].sum() - TP # incorrectly labeled as i
FN = confusion_mat[i,:].sum() - TP # incorrectly labeled as non-i
TN = confusion_mat.sum().sum() - TP - FP - FN
if to_print:
print('TP: {}'.format(TP))
print('FP: {}'.format(FP))
print('FN: {}'.format(FN))
print('TN: {}'.format(TN))
return TP, FP, FN, TN
for i in range(4):
print('Calculating 2x2 contigency table for label{}'.format(i))
process_cm(confusion_matrix, i, to_print=True)
Calculating 2x2 contigency table for label0
TP: 2
FP: 6
FN: 7
TN: 19
Calculating 2x2 contigency table for label1
TP: 4
FP: 0
FN: 6
TN: 24
Calculating 2x2 contigency table for label2
TP: 3
FP: 8
FN: 3
TN: 20
Calculating 2x2 contigency table for label3
TP: 4
FP: 7
FN: 5
TN: 18
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1685 次 |
| 最近记录: |