vpk*_*vpk 11 python filtering selection pandas
在pandas数据框架上,我知道我可以在一列或多列上进行分组,然后过滤多于/少于给定数字的值.
但我想在数据帧的每一列上都这样做.我想删除过于频繁的值(假设发生的次数少于5%)或过于频繁.例如,考虑一个包含以下列的数据框:city of origin, city of destination, distance, type of transport (air/car/foot), time of day, price-interval.
import pandas as pd
import string
import numpy as np
vals = [(c, np.random.choice(list(string.lowercase), 100, replace=True)) for c in
'city of origin', 'city of destination', 'distance, type of transport (air/car/foot)', 'time of day, price-interval']
df = pd.DataFrame(dict(vals))
>> df.head()
city of destination city of origin distance, type of transport (air/car/foot) time of day, price-interval
0 f p a n
1 k b a f
2 q s n j
3 h c g u
4 w d m h
Run Code Online (Sandbox Code Playgroud)
如果这是一个大数据帧,则删除具有虚假项目的行是有意义的,例如,如果time of day = night仅发生3%的时间,或者foot传输模式很少,依此类推.
我想从所有列(或列列表)中删除所有此类值.我的一个想法是value_counts在每一列上做一个,transform并为每个value_counts添加一列; 然后根据它们是高于还是低于阈值进行过滤.但我认为必须有更好的方法来实现这一目标?
Ale*_*der 10
此过程将遍历DataFrame的每一列,并消除给定类别小于给定阈值百分比的行,从而缩小每个循环上的DataFrame.
这个答案类似于@Ami Tavory提供的答案,但有一些细微的差别:
码:
threshold = 0.03
for col in df:
counts = df[col].value_counts(normalize=True)
df = df.loc[df[col].isin(counts[counts > threshold].index), :]
Run Code Online (Sandbox Code Playgroud)
代码时间:
df2 = pd.DataFrame(np.random.choice(list(string.lowercase), [1e6, 4], replace=True),
columns=list('ABCD'))
%%timeit df=df2.copy()
threshold = 0.03
for col in df:
counts = df[col].value_counts(normalize=True)
df = df.loc[df[col].isin(counts[counts > threshold].index), :]
1 loops, best of 3: 485 ms per loop
%%timeit df=df2.copy()
m = 0.03 * len(df)
for c in df:
df = df[df[c].isin(df[c].value_counts()[df[c].value_counts() > m].index)]
1 loops, best of 3: 688 ms per loop
Run Code Online (Sandbox Code Playgroud)