在Python中从点云数据创建表面网格

Dip*_*ole 5 python plot matplotlib

这是一个创建点云的示例,然后我想将其拟合到网格表面上。当我尝试将网格数组传递给插入数据的函数时,问题出现在最后:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

# Create some point cloud data:
c = 1
a = 3
b = 4

slice = {}
t = np.linspace(0,2*np.pi,50)

for s in np.linspace(1,9,10):
    c = 5*s
    r = (-s**2+10.0*s)/10.0
    X = r*np.cos(t)
    Y = r*np.sin(t)
    Z = c*(Y**2/b**2 - X**2/a**2) + c
    slice[str(int(s))] = np.vstack([X,Y,Z])


# Visualize it:

fig = plt.figure()
ax = fig.gca(projection = '3d')

for k,v in slice.iteritems():
    print type(v)
    print np.shape(v)
    X = v[0,:]
    Y = v[1,:]
    Z = v[2,:]
    ax.scatter(X,Y,Z)
plt.show()
Run Code Online (Sandbox Code Playgroud)

它看起来像这样:

在此输入图像描述

我现在需要基于这些点创建表面网格。在这种情况下,表面有多种解释,因为我只有点云而不是函数 z = f(x,y),但在这种情况下正确的表面应该是创建空心“扭曲圆柱体”的表面。我想这样解决这个问题:

# stack all points from each slice into one vector for each coordinate:
Xs = []
Ys = []
Zs = []
for k,v in slice.iteritems():
    #ax.plot_surface(X,Y,Z)
    X = v[0,:]
    Y = v[1,:]
    Z = v[2,:]
    Xs = np.hstack((Xs,X))
    Ys = np.hstack((Ys,Y))
    Zs = np.hstack((Zs,Z))

XX, YY = np.meshgrid(Xs,Ys)

from scipy import interpolate
f = interpolate.interp2d(Xs,Ys,Zs, kind = 'cubic')
ZZ = f(XX,YY)
Run Code Online (Sandbox Code Playgroud)

然后我就可以使用它来绘制

fig = plt.figure()
ax = fig.gca(projection = '3d')

ax.plot_surface(XX, YY, ZZ)
plt.show()
Run Code Online (Sandbox Code Playgroud)

然而,插值函数似乎不接受数组作为输入,因此此方法可能不起作用。任何人都可以提出如何正确执行此操作的建议吗?

编辑:

实际上,数据显然无法表示为函数,因为它不是一对一的。

zuf*_*all 2

我偶然发现了同样的问题,并想知道为什么在过去的7年里它还没有得到解决。这是我基于plot_trisurf(以及相应的代码示例)为未来读者提供的解决方案。

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri

# Create some point cloud data:
a = 3
b = 4

# def grid of parametric variables
u = np.linspace(0,2*np.pi,50)
v = np.linspace(1,9,50)
U, V = np.meshgrid(u, v)
U, V = U.flatten(), V.flatten()

# Triangulate parameter space to determine the triangles
tri = mtri.Triangulation(U, V)

# get the transformed data as list
X,Y,Z = [],[],[]
for _u in u:
  for _v in v:
    r = (-_v**2+10.0*_v)/10.0
    x = r*np.cos(_u)
    y = r*np.sin(_u)
    z = 5*_v*(y**2/b**2 - x**2/a**2) + 5*_v
    X.append(x)
    Y.append(y)
    Z.append(z)

# Visualize it:
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.scatter(X,Y,Z, s=1, c='r')
ax.plot_trisurf(X, Y, Z, triangles=tri.triangles, alpha=.5)
plt.show()
Run Code Online (Sandbox Code Playgroud)

这会产生以下情节。 在此输入图像描述