我想使用霍夫变换来检测图像中的线条,但不想绘制线条,而是要删除原始图像中检测到的每条线条。
image=imread('image.jpg');
image = im2bw(image);
BW=edge(image,'canny');
imshow(BW);
figure,imshow(BW);
[H,T,R] = hough(BW);
P = houghpeaks(H,100,'threshold',ceil(0.3*max(H(:))));
lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
Run Code Online (Sandbox Code Playgroud)
现在,在此之后,我已经掌握了所有要求。但是我想从原始图像中删除所有这些行,并像以前一样保留其余图像。有什么办法可以做到这一点?
编辑我正在上传图像,我想删除所有线条并保留圆形部分,这只是一个示例图像,基本上我的目标是删除线段并保留其余图像
您遇到的问题是您的线条粗于一个像素。霍夫变换中的线条似乎只有一个像素粗,这无济于事。
我建议您首先删除从Hough变换中获得的行。这样可以将曲棍球场的任何部分划分为易于处理的段。
然后用标记每个细分bwlabel
。对于每个对象,找到端点并在端点之间拟合一条线。如果线和对象的共同像素多于某个阈值,那么我们说该对象是线,则将其从图像中删除。
您可能需要尝试霍夫变换的阈值。
这种技术虽然有一些缺陷。它将删除一个已填充的正方形,矩形或圆形,但是您没有任何一个,因此您应该可以。
这是我修改的代码。我删除了渐变,因为它更容易处理实体对象。渐变产生非常细的线条。我还处理补码图像,因为bw函数使用1作为补偿,而不是原始图像中的0。
org_image_bw=im2bw(double(imread('http://i.stack.imgur.com/hcphc.png')));
image = imcomplement(org_image_bw);
[H,T,R] = hough(image);
P = houghpeaks(H,100,'threshold',ceil(0.27*max(H(:))));
lines = houghlines(image,T,R,P,'FillGap',5,'MinLength',7);
Run Code Online (Sandbox Code Playgroud)
循环浏览已有的行并将其删除
processed_image = image;
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
% // Use the question of a line y = kx + m to calulate x,y
% // Calculate the maximum number of elements in a line
numOfElems = max(max(xy(:,1))-min(xy(:,1)),max(xy(:,2))-min(xy(:,2)) ) ;
% // Cater for the special case where the equation of a line is
% // undefined, i.e. there is only one x value.
% // We use linspace rather than the colon operator because we want
% // x and y to have the same length and be evenly spaced.
if (diff(xy(:,1)) == 0)
y = round(linspace(min(xy(:,2)),max(xy(:,2)),numOfElems));
x = round(linspace(min(xy(:,1)),max(xy(:,1)),numOfElems));
else
k = diff(xy(:,2)) ./ diff(xy(:,1)); % // the slope
m = xy(1,2) - k.*xy(1,1); % // The crossing of the y-axis
x = round(linspace(min(xy(:,1)), max(xy(:,1)), numOfElems));
y = round(k.*x + m); % // the equation of a line
end
processed_image(y,x) = 0; % // delete the line
end
Run Code Online (Sandbox Code Playgroud)
这是我们删除检测到的行后图像的外观。请注意,原来的冰球场又被分为多个对象。
标记剩余的对象
L = bwlabel(processed_image);
Run Code Online (Sandbox Code Playgroud)
遍历每个对象并找到终点。然后在上面装一条线。假设80%的拟合线覆盖了对象,那么它就是一条线。
拟合线可能看起来像这样。蓝色斜线表示拟合线,并且覆盖了大部分对象(白色区域)。因此,我们说对象是一条线。
% // Set the threshold
th = 0.8;
% // Loop through the objects
for objNr=1:max(L(:))
[objy, objx] = find(L==objNr);
% Find the end points
endpoints = [min(objx) min(objy) ...
;max(objx) max(objy)];
% Fit a line to it. y = kx + m
numOfElems = max(max(endpoints(:,1))-min(endpoints(:,1)),max(endpoints(:,2))-min(endpoints(:,2)) ) ;
% // Cater for the special case where the equation of a line is
% // undefined, i.e. there is only one x value
if (diff(endpoints(:,1)) == 0)
y = round(linspace(min(endpoints(:,2)),max(endpoints(:,2)),numOfElems));
x = round(linspace(min(endpoints(:,1)),max(endpoints(:,1)),numOfElems));
else
k = diff(endpoints(:,2)) ./ diff(endpoints(:,1)); % the slope
m = endpoints(1,2) - k.*endpoints(1,1); % The crossing of the y-axis
x = round(linspace(min(endpoints(:,1)), max(endpoints(:,1)), numOfElems));
y = round(k.*x + m);
% // Set any out of boundary items to the boundary
y(y>size(L,1)) = size(L,1);
end
% // Convert x and y to an index for easy comparison with the image
% // We sort them so that we are comparing the same pixels
fittedInd = sort(sub2ind(size(L),y,x)).';
objInd = sort(sub2ind(size(L),objy,objx));
% // Calculate the similarity. Intersect returns unique entities so we
% // use unique on fittedInd
fitrate = numel(intersect(fittedInd,objInd)) ./ numel(unique(fittedInd));
if (fitrate >= th)
L(objInd) = 0;
processed_image(objInd) = 0;
% // figure(1),imshow(processed_image)
end
end
Run Code Online (Sandbox Code Playgroud)
显示结果
figure,imshow(image);title('Original');
figure,imshow(processed_image);title('Processed image');
Run Code Online (Sandbox Code Playgroud)
org_image_bw=im2bw(double(imread('http://i.stack.imgur.com/hcphc.png')));
image = imcomplement(org_image_bw);
[H,T,R] = hough(image);
P = houghpeaks(H,100,'threshold',ceil(0.27*max(H(:))));
lines = houghlines(image,T,R,P,'FillGap',5,'MinLength',7);
processed_image = image;
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
% // Use the question of a line y = kx + m to calulate x,y
%Calculate the maximum number of elements in a line
numOfElems = max(max(xy(:,1))-min(xy(:,1)),max(xy(:,2))-min(xy(:,2)) ) ;
% // Cater for the special case where the equation of a line is
% // undefined, i.e. there is only one x value.
% // We use linspace rather than the colon operator because we want
% // x and y to have the same length and be evenly spaced.
if (diff(xy(:,1)) == 0)
y = round(linspace(min(xy(:,2)),max(xy(:,2)),numOfElems));
x = round(linspace(min(xy(:,1)),max(xy(:,1)),numOfElems));
else
k = diff(xy(:,2)) ./ diff(xy(:,1)); % the slope
m = xy(1,2) - k.*xy(1,1); % The crossing of the y-axis
x = round(linspace(min(xy(:,1)), max(xy(:,1)), numOfElems));
y = round(k.*x + m); % // the equation of a line
end
processed_image(y,x) = 0; % // delete the line
end
% // Label the remaining objects
L = bwlabel(processed_image);
% // Run through each object and find the end points.
% // Then fit a line to it. If, let's say 80% the fitted line covers
% // the object, then it is a line.
% // Set the threshold
th = 0.8;
% // Loop through the objects
for objNr=1:max(L(:))
[objy, objx] = find(L==objNr);
% Find the end points
endpoints = [min(objx) min(objy) ...
;max(objx) max(objy)];
% Fit a line to it. y = kx + m
numOfElems = max(max(endpoints(:,1))-min(endpoints(:,1)),max(endpoints(:,2))-min(endpoints(:,2)) ) ;
% Cater for the special case where the equation of a line is
% undefined, i.e. there is only one x value
if (diff(endpoints(:,1)) == 0)
y = round(linspace(min(endpoints(:,2)),max(endpoints(:,2)),numOfElems));
x = round(linspace(min(endpoints(:,1)),max(endpoints(:,1)),numOfElems));
else
k = diff(endpoints(:,2)) ./ diff(endpoints(:,1)); % the slope
m = endpoints(1,2) - k.*endpoints(1,1); % The crossing of the y-axis
x = round(linspace(min(endpoints(:,1)), max(endpoints(:,1)), numOfElems));
y = round(k.*x + m);
% // Set any out of boundary items to the boundary
y(y>size(L,1)) = size(L,1);
end
% // Convert x and y to an index for easy comparison with the image
% // We sort them so that we are comparing the same pixels
fittedInd = sort(sub2ind(size(L),y,x)).';
objInd = sort(sub2ind(size(L),objy,objx));
% Calculate the similarity. Intersect returns unique entities so we
% use unique on fittedInd
fitrate = numel(intersect(fittedInd,objInd)) ./ numel(unique(fittedInd));
if (fitrate >= th)
L(objInd) = 0;
processed_image(objInd) = 0;
% // figure(1),imshow(processed_image)
end
end
% // Display the result
figure,imshow(image);title('Original');
figure,imshow(processed_image);title('Processed image');
Run Code Online (Sandbox Code Playgroud)