Spark MlLib线性回归(线性最小二乘)给出随机结果

use*_*415 5 machine-learning apache-spark apache-spark-mllib

我是火花和机器学习的新手.我已经成功完成了一些Mllib教程,我无法使用这个教程:

我在这里找到了示例代码:https: //spark.apache.org/docs/latest/mllib-linear-methods.html#linear-least-squares-lasso-and-ridge-regression

(部分LinearRegressionWithSGD)

这是代码:

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data
val data = sc.textFile("data/mllib/ridge-data/lpsa.data")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}.cache()

// Building the model
val numIterations = 100
val model = LinearRegressionWithSGD.train(parsedData, numIterations)

// Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
  val prediction = model.predict(point.features)
  (point.label, prediction)
}
val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
println("training Mean Squared Error = " + MSE)

// Save and load model
model.save(sc, "myModelPath")
val sameModel = LinearRegressionModel.load(sc, "myModelPath")
Run Code Online (Sandbox Code Playgroud)

(这正是网站上的内容)

结果是

training Mean Squared Error = 6.2087803138063045

valuesAndPreds.collect
Run Code Online (Sandbox Code Playgroud)

    Array[(Double, Double)] = Array((-0.4307829,-1.8383286021929077),
 (-0.1625189,-1.4955700806407322), (-0.1625189,-1.118820892849544), 
(-0.1625189,-1.6134108278724875), (0.3715636,-0.45171266551058276), 
(0.7654678,-1.861316066986158), (0.8544153,-0.3588282725617985), 
(1.2669476,-0.5036812148225209), (1.2669476,-1.1534698170911792), 
(1.2669476,-0.3561392231695041), (1.3480731,-0.7347031705813306), 
(1.446919,-0.08564658011814863), (1.4701758,-0.656725375080344), 
(1.4929041,-0.14020483324910105), (1.5581446,-1.9438858658143454), 
(1.5993876,-0.02181165554398845), (1.6389967,-0.3778677315868635), 
(1.6956156,-1.1710092824030043), (1.7137979,0.27583044213064634), 
(1.8000583,0.7812664902440078), (1.8484548,0.94605507153074), 
(1.8946169,-0.7217282082851512), (1.9242487,-0.24422843221437684),...
Run Code Online (Sandbox Code Playgroud)

我的问题是预测看起来完全随机(和错误),并且由于它是网站示例的完美副本,具有相同的输入数据(训练集),我不知道在哪里看,我错过了什么?

请给我一些建议或线索,在哪里搜索,我可以阅读和实验.

谢谢

sel*_*rce 1

线性回归基于 SGD,需要调整步长,请参阅http://spark.apache.org/docs/latest/mllib-optimization.html了解更多详细信息。

在您的示例中,如果将步长设置为 0.1,您将获得更好的结果 (MSE = 0.5)。

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data
val data = sc.textFile("data/mllib/ridge-data/lpsa.data")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}.cache()

// Build the model
var regression = new LinearRegressionWithSGD().setIntercept(true)
regression.optimizer.setStepSize(0.1)
val model = regression.run(parsedData)

// Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
  val prediction = model.predict(point.features)
  (point.label, prediction)
}
val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
println("training Mean Squared Error = " + MSE)
Run Code Online (Sandbox Code Playgroud)

有关更真实的数据集的另一个示例,请参阅

https://github.com/selvinsource/spark-pmml-exporter-validator/blob/master/src/main/resources/datasets/winequalityred_linearregression.md

https://github.com/selvinsource/spark-pmml-exporter-validator/blob/master/src/main/resources/spark_shell_exporter/linearregression_winequalityred.scala