urs*_*rei 5 parallel-processing multithreading rust
我试图通过使用线程来加速对大型向量的昂贵计算.我的函数使用向量,计算新值的向量(它不会聚合,但必须保留输入顺序),并返回它.但是,我正在努力弄清楚如何生成线程,为每个线程分配矢量切片,然后收集并合并结果.
// tunable
const NUMTHREADS: i32 = 4;
fn f(val: i32) -> i32 {
// expensive computation
let res = val + 1;
res
}
fn main() {
// choose an odd number of elements
let orig = (1..14).collect::<Vec<i32>>();
let mut result: Vec<Vec<i32>> = vec!();
let mut flat: Vec<i32> = Vec::with_capacity(orig.len());
// split into slices
for chunk in orig.chunks(orig.len() / NUMTHREADS as usize) {
result.push(
chunk.iter().map(|&digit|
f(digit)).collect()
);
};
// flatten result vector
for subvec in result.iter() {
for elem in subvec.iter() {
flat.push(elem.to_owned());
}
}
println!("Flattened result: {:?}", flat);
}
Run Code Online (Sandbox Code Playgroud)
线程计算应该在for chunk…
和之间进行// flatten …
,但我找不到很多产生x线程的简单例子,顺序分配块,并将新计算的向量从线程中返回到容器中,以便可以展平.我必须包裹orig.chunks()
在Arc
,并手动抓住每个块的循环?我是否必须f
进入每个线程?我是否必须使用B树来确保输入和输出顺序匹配?我可以用simple_parallel
吗?
嗯,对于不稳定的人来说,这是一个理想的应用程序thread::scoped()
:
#![feature(scoped)]
use std::thread::{self, JoinGuard};
// tunable
const NUMTHREADS: i32 = 4;
fn f(val: i32) -> i32 {
// expensive computation
let res = val + 1;
res
}
fn main() {
// choose an odd number of elements
let orig: Vec<i32> = (1..14).collect();
let mut guards: Vec<JoinGuard<Vec<i32>>> = vec!();
// split into slices
for chunk in orig.chunks(orig.len() / NUMTHREADS as usize) {
let g = thread::scoped(move || chunk.iter().cloned().map(f).collect());
guards.push(g);
};
// collect the results
let mut result: Vec<i32> = Vec::with_capacity(orig.len());
for g in guards {
result.extend(g.join().into_iter());
}
println!("Flattened result: {:?}", result);
}
Run Code Online (Sandbox Code Playgroud)
它不稳定,并且不太可能以这种形式稳定,因为它有一个固有的缺陷(您可以在此处找到更多信息)。据我所知,simple_parallel
这只是这种方法的扩展 - 它隐藏了摆弄JoinGuards
,也可以在稳定的 Rust 中使用(unsafe
我相信可能有一些 ty)。然而,正如其文档所建议的那样,不建议将其用于一般用途。
当然,您可以使用thread::spawn()
,但是您将需要克隆每个块,以便将其移动到每个线程中:
use std::thread::{self, JoinHandle};
// tunable
const NUMTHREADS: i32 = 4;
fn f(val: i32) -> i32 {
// expensive computation
let res = val + 1;
res
}
fn main() {
// choose an odd number of elements
let orig: Vec<i32> = (1..14).collect();
let mut guards: Vec<JoinHandle<Vec<i32>>> = vec!();
// split into slices
for chunk in orig.chunks(orig.len() / NUMTHREADS as usize) {
let chunk = chunk.to_owned();
let g = thread::spawn(move || chunk.into_iter().map(f).collect());
guards.push(g);
};
// collect the results
let mut result: Vec<i32> = Vec::with_capacity(orig.len());
for g in guards {
result.extend(g.join().unwrap().into_iter());
}
println!("Flattened result: {:?}", result);
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
210 次 |
最近记录: |