对于以下数据
> head(df)
Date Longitude Latitude Elevation Max.Temperature Min.Temperature Precipitation Wind Relative.Humidity Solar RO
1 2014-07-01 77.1875 7.96184 -9999 27.725 26.673 16.115560560 8.395378 0.8132272 23.08192 Yes
2 2014-07-02 77.1875 7.96184 -9999 27.931 26.897 0.700378560 8.062267 0.8074675 21.48473 Yes
3 2014-07-03 77.1875 7.96184 -9999 28.179 26.686 0.000000000 9.465022 0.8107901 24.14900 No
4 2014-07-04 77.1875 7.96184 -9999 27.657 26.545 0.003433226 9.397203 0.8195020 23.42036 Yes
5 2014-07-05 77.1875 7.96184 -9999 27.157 26.490 1.541518560 8.903047 0.8385059 23.90545 Yes
6 2014-07-06 77.1875 7.96184 -9999 27.308 26.481 0.000000000 8.617348 0.8205267 23.96318 No
Run Code Online (Sandbox Code Playgroud)
我已经使用ggmap创建了地图
> Precip_map<-get_map(location="india",maptype="satellite",zoom=12)
Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=india&zoom=12&size=640x640&scale=2&maptype=satellite&language=en-EN&sensor=false
> ggmap(Precip_map, extent = "device") + geom_point(aes(x = Longitude, y = Latitude), colour = "red",
+ alpha = 0.1, size = 2, data = df)
Warning message:
In loop_apply(n, do.ply) :
Removed 1106 rows containing missing values (geom_point).
Run Code Online (Sandbox Code Playgroud)
绘制轮廓图
> ggmap(Precip_map, extent = "device") + geom_density2d(data = df,
+ aes(x = Longitude, y = Latitude), size = 0.3) + stat_density2d(data = df,
+ aes(x = Longitude, y = Latitude, fill = ..level.., alpha = ..level..), size = 0.01,
+ bins = 16, geom = "polygon") + scale_fill_gradient(low = "green", high = "red",
+ guide = FALSE) + scale_alpha(range = c(0, 0.3), guide = FALSE)
Error in if (any(h <= 0)) stop("bandwidths must be strictly positive") :
missing value where TRUE/FALSE needed
Error in if (any(h <= 0)) stop("bandwidths must be strictly positive") :
missing value where TRUE/FALSE needed
In addition: Warning message:
In loop_apply(n, do.ply) :
Removed 1106 rows containing non-finite values (stat_density2d).
Warning message:
In loop_apply(n, do.ply) :
Removed 1106 rows containing non-finite values (stat_density2d).
Run Code Online (Sandbox Code Playgroud)
我不确切知道我缺少的地方..我是这个映射的新手..请帮助我。另外,我想在此轮廓图中绘制df $ Precipitation。
lat, long整个数据集中的值相同。因此,lat和long方向的方差均为零,因此无法计算内核密度估计(KDE)的带宽。
因此,您得到了错误bandwidths must be strictly positive。
为了计算2-D KDE,x和y方向的方差都必须为正。由于两次方差均为0,因此您会收到两次错误。