use*_*451 1 python numpy pandas
带有以下代码段
import pandas as pd
train = pd.read_csv('train.csv',parse_dates=['dates'])
print(data['dates'])
Run Code Online (Sandbox Code Playgroud)
我加载并控制数据。
我的问题是,如何使data ['dates']标准化/归一化以使所有元素都位于-1和1(线性或高斯)之间?
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import time
def convert_to_timestamp(x):
"""Convert date objects to integers"""
return time.mktime(x.to_datetime().timetuple())
def normalize(df):
"""Normalize the DF using min/max"""
scaler = MinMaxScaler(feature_range=(-1, 1))
dates_scaled = scaler.fit_transform(df['dates'])
return dates_scaled
if __name__ == '__main__':
# Create a random series of dates
df = pd.DataFrame({
'dates':
['1980-01-01', '1980-02-02', '1980-03-02', '1980-01-21',
'1981-01-21', '1991-02-21', '1991-03-23']
})
# Convert to date objects
df['dates'] = pd.to_datetime(df['dates'])
# Now df has date objects like you would, we convert to UNIX timestamps
df['dates'] = df['dates'].apply(convert_to_timestamp)
# Call normalization function
df = normalize(df)
Run Code Online (Sandbox Code Playgroud)
convert_to_timestamp dates
0 1980-01-01
1 1980-02-02
2 1980-03-02
3 1980-01-21
4 1981-01-21
5 1991-02-21
6 1991-03-23
Run Code Online (Sandbox Code Playgroud)
MinMaxScalerfrom 进行规范化的UNIX时间戳sklearn dates
0 315507600
1 318272400
2 320778000
3 317235600
4 348858000
5 667069200
6 669661200
Run Code Online (Sandbox Code Playgroud)
[-1. -0.98438644 -0.97023664 -0.99024152 -0.81166138 0.98536228
1. ]
Run Code Online (Sandbox Code Playgroud)
熊猫的解决方案
df = pd.DataFrame({
'A':
['1980-01-01', '1980-02-02', '1980-03-02', '1980-01-21',
'1981-01-21', '1991-02-21', '1991-03-23'] })
df['A'] = pd.to_datetime(df['A']).astype('int64')
max_a = df.A.max()
min_a = df.A.min()
min_norm = -1
max_norm =1
df['NORMA'] = (df.A- min_a) *(max_norm - min_norm) / (max_a-min_a) + min_norm
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4657 次 |
| 最近记录: |