Est*_*ban 8 parallel-processing julia ipython-notebook jupyter
我正在Ipython中准备一个小小的演示文稿,我想展示在Julia中进行并行操作是多么容易.
它基本上是这里描述的蒙特卡罗Pi计算
问题是我无法在IPython(Jupyter)笔记本中并行工作,它只使用一个.
我开始朱莉娅: julia -p 4
如果我在REPL中定义函数并在那里运行它可以正常工作.
@everywhere function compute_pi(N::Int)
"""
Compute pi with a Monte Carlo simulation of N darts thrown in [-1,1]^2
Returns estimate of pi
"""
n_landed_in_circle = 0
for i = 1:N
x = rand() * 2 - 1 # uniformly distributed number on x-axis
y = rand() * 2 - 1 # uniformly distributed number on y-axis
r2 = x*x + y*y # radius squared, in radial coordinates
if r2 < 1.0
n_landed_in_circle += 1
end
end
return n_landed_in_circle / N * 4.0
end
Run Code Online (Sandbox Code Playgroud)
function parallel_pi_computation(N::Int; ncores::Int=4)
"""
Compute pi in parallel, over ncores cores, with a Monte Carlo simulation throwing N total darts
"""
# compute sum of pi's estimated among all cores in parallel
sum_of_pis = @parallel (+) for i=1:ncores
compute_pi(int(N/ncores))
end
return sum_of_pis / ncores # average value
end
Run Code Online (Sandbox Code Playgroud)
julia> @time parallel_pi_computation(int(1e9))
elapsed time: 2.702617652 seconds (93400 bytes allocated)
3.1416044160000003
Run Code Online (Sandbox Code Playgroud)
但当我这样做时:
using IJulia
notebook()
Run Code Online (Sandbox Code Playgroud)
并尝试在Notebook内部执行相同的操作,它只使用1个核心:
In [5]: @time parallel_pi_computation(int(10e8))
elapsed time: 10.277870808 seconds (219188 bytes allocated)
Out[5]: 3.141679988
Run Code Online (Sandbox Code Playgroud)
那么,为什么Jupyter不使用所有核心?我能做些什么才能让它发挥作用?
谢谢.