我想用两个变量最小化一个函数.
首先,我已经创建了一个函数(rba)
,在(kvasum)
我需要最小化的函数内部需要它.最小化的值是其中的一部分rba
.
# Data
vpk = data.frame(V1 =c(3650000000, 19233, 2211.2, 479.47, 168.46, 83.447, 52.349, 38.738,
32.34, 29.588), V2 = 1:10)
n = nrow(vpk)
# functions to minimize
# This function returns a vector with 10 values
rba = function(par){
v <- matrix(ncol = 1, nrow = 10)
for (p in 1:10){
k<- ifelse (par[1] < 1-1/p && par[1]>0 && p > par[2] &&
par[2]>0 && par[2]<2, par[2]*p,
ifelse(par[1] < 1-1/par[2] && par[1] > 0 &&
p < par[2] && par[2]>0 && par[2]<2, -1+(par[1]+1/par[2]),
ifelse(par[1] > (1 - 1 / max(p,par[2])) &&
par[2]>0 && par[2]<2, -1+p, "error")))
v[p] <- k
}
return(v)
}
# This function uses the function rba, and returns a value
kvasum = function(par){
sum( (log(vpk$V1)/log(1/n) - rba(par) )^2)
}
# what I would I to do is to find par[1] and par[2] such that kvasum is minimized
m1 = optim(par=c(0.1,0.4),kvasum, lower=0)
Run Code Online (Sandbox Code Playgroud)
我试过使用optim函数,但是我无法使用它.我得到一个非数字参数,并尝试了我能想到的一切.任何帮助表示赞赏.
您的整个过程存在一些问题,可能会导致问题.
首先作为@ user227710的提到了应更换的意见&&
与&
.这些有不同的含义.
看起来您想要为参数设置限制(即所谓的框约束).为了做到这一点并因此使用lower
参数,您需要使用该L-BFGS-B
方法.使用它时,您还需要指定upper
参数.
您收到的错误,您收到它是因为您的ifelse
语句仅在值大致介于0和1之间时才起作用.否则,k变量获取值error
(如果ifelse
语句中的所有条件都为FALSE 则返回的值)这就是为什么你得到的
Error in log(vpk$V1)/log(1/n) - rba(par) :
non-numeric argument to binary operator
Run Code Online (Sandbox Code Playgroud)
错误.
因此,如果你相应地指定你的盒子约束(或者你可能看看你的ifelse语句,因为你可能编码错了),这似乎是完美的:
# Data
vpk = data.frame(V1 =c(3650000000, 19233, 2211.2, 479.47, 168.46, 83.447, 52.349, 38.738,
32.34, 29.588), V2 = 1:10)
n = nrow(vpk)
# functions to minimize
# This function returns a vector with 10 values
rba = function(par){
v <- matrix(ncol = 1, nrow = 10)
for (p in 1:10){
k<- ifelse (par[1] < 1-1/p & par[1]>0 & p > par[2] &
par[2]>0 & par[2]<2, par[2]*p,
ifelse(par[1] < 1-1/par[2] & par[1] > 0 &
p < par[2] & par[2]>0 & par[2]<2, -1+(par[1]+1/par[2]),
ifelse(par[1] > (1 - 1 / max(p,par[2])) &
par[2]>0 & par[2]<2, -1+p, "error")))
#I am adding a line here so that you know why the optim failed
if(k=='error') stop('your ifelse function returned an error')
v[p] <- k
}
return(v)
}
# This function uses the function rba, and returns a value
kvasum = function(par){
sum( (log(vpk$V1)/log(1/n) - rba(par) )^2)
}
# what I would I to do is to find par[1] and par[2] such that kvasum is minimized
m1 = optim(par=c(0.1,0.4),kvasum, method='L-BFGS-B', lower= c(0.1,0.1), upper=c(0.9,0.9))
Run Code Online (Sandbox Code Playgroud)
> m1
$par
[1] 0.1 0.1
$value
[1] 171.5774
$counts
function gradient
2 2
$convergence
[1] 0
$message
[1] "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL"
Run Code Online (Sandbox Code Playgroud)