pra*_*dy4 6 opencv computer-vision face-detection python-2.7
我正在使用内置的级联分类器进行人脸检测.这是代码的方式(OpenCV Python Tutorials):
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
img = cv2.imread('ammma.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.Rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for(ex,ey,ew,eh) in eyes:
cv2.Rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
但是当我运行代码时,我收到以下错误:
C:\ Python27\python.exe C:/Users/DELL/Downloads/Amma/code/fd.py
OpenCV错误:断言失败(!empty())在cv :: CascadeClassifier :: detectMultiScale中,文件C:\ builds\master_PackSlaveAddon-win32-vc12-static\opencv\modules\objdetect\src\cascadedetect.cpp,第1634行Traceback(最近一次调用最后一次):文件"C:/Users/DELL/Downloads/Amma/code/fd.py",第10行,在faces = face_cascade.detectMultiScale(img,1.3,5)cv2.error:C:\ builds\master_PackSlaveAddon-win32-vc12-static\opencv\modules\objdetect\src\cascadedetect.cpp:1634:错误:(-215)!empty()in function cv :: CascadeClassifier :: detectMultiScale
aka*_*kov 28
请参阅此行代码,检查级联非空时失败.请检查具有经过培训的级联的XML文件的路径.您可能需要指定XML的完整路径,如下所示:
face_cascade = cv2.CascadeClassifier('D:\opencv\data\haarcascades\haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('D:\opencv\data\haarcascades\haarcascade_eye.xml')
Run Code Online (Sandbox Code Playgroud)
或者只是将这些文件放到包含脚本的目录中.
您不需要下载或复制.xml文件。根据OpenCV-Python PyPi页面,您可以简单地使用打包路径到已安装的层叠- cv2.data.haarcascades
:
import cv2
# Globals
FACE_CLASSIFIER = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
EYE_CLASSIFIER = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
SCALE_FACTOR = 1.3
BLUE_COLOR = (255, 0, 0)
MIN_NEIGHBORS = 5
# Then use it however you'd like
try:
faces = FACE_CLASSIFIER.detectMultiScale(gray, SCALE_FACTOR, MIN_NEIGHBORS)
for (x, y, w, h) in faces:
cv2.rectangle(self.roi_frame, (x, y), (x+w, y+h), BLUE_COLOR, HAAR_LINE_THICKNESS)
roi_gray = gray[y:y+h, x:x+w]
roi_color = self.roi_frame[y:y+h, x:x+w]
eyes = EYE_CLASSIFIER.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), GREEN_COLOR, HAAR_LINE_THICKNESS)
except Exception as e:
warnings.warn('{}.show_haar_features: got exception {}'.format(__name__, e))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
35653 次 |
最近记录: |