Jam*_*ame 2 python face-recognition python-2.7 caffe
我正在基于这里的开源进行年龄分类 python 代码有
age_net_pretrained='./age_net.caffemodel'
age_net_model_file='./deploy_age.prototxt'
age_net = caffe.Classifier(age_net_model_file, age_net_pretrained,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
Run Code Online (Sandbox Code Playgroud)
在哪个.prototxt文件中如下所示。我保留一个文件,即".caffemodel". 至于源代码,他之前提供过。但是,我想根据我的面部数据库再次创建它。你能有任何教程或一些创建它的方法吗?我假设我有一个文件夹图像,其中包含 100 张图像并分为属于每个年龄组(1 到 1),例如
image1.png 1
image2.png 1
..
image10.png 1
image11.png 2
image12.png 2
...
image100.png 10
Run Code Online (Sandbox Code Playgroud)
这是 prototxt 文件。提前致谢
name: "CaffeNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 227
input_dim: 227
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 7
stride: 4
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm2"
type: LRN
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layers{
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "pool5"
type: POOLING
bottom: "conv3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "fc6"
type: INNER_PRODUCT
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 512
}
}
layers {
name: "relu6"
type: RELU
bottom: "fc6"
top: "fc6"
}
layers {
name: "drop6"
type: DROPOUT
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc7"
type: INNER_PRODUCT
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 512
}
}
layers {
name: "relu7"
type: RELU
bottom: "fc7"
top: "fc7"
}
layers {
name: "drop7"
type: DROPOUT
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc8"
type: INNER_PRODUCT
bottom: "fc7"
top: "fc8"
inner_product_param {
num_output: 8
}
}
layers {
name: "prob"
type: SOFTMAX
bottom: "fc8"
top: "prob"
}
Run Code Online (Sandbox Code Playgroud)
小智 5
要获得咖啡模型,您需要训练网络。该 prototxt 文件仅用于部署模型,不能用于训练模型。
您需要添加一个指向数据库的数据层。要使用您提到的文件列表,图层的源应该是 HDF5。您可能需要添加带有平均值的transform_param。为了提高效率,图像文件可以替换为 LMDB 或 LevelDB 数据库。
在网络的末尾,您必须用“损失”层替换“概率”层。像这样的东西:
层 { 名称:“loss” 类型:SoftmaxWithLoss 底部:“fc8” 顶部:“loss” }
图层目录可以在这里找到:
http://caffe.berkeleyvision.org/tutorial/layers.html
或者,由于您的网络是众所周知的......只需看看本教程即可:P。
http://caffe.berkeleyvision.org/gathered/examples/imagenet.html
用于训练的正确 prototxt 文件包含在 caffe 中('train_val.prototxt')。
| 归档时间: |
|
| 查看次数: |
16760 次 |
| 最近记录: |