law*_*yeR 5 r tm regex-lookarounds qdap
如何在角色向量中找到频繁的相邻单词对?例如,使用原油数据集,一些常见的货币对是"原油","石油市场"和"百万桶".
下面的小例子的代码试图识别频繁的术语,然后使用正向前瞻断言,计算频繁术语立即跟随这些频繁术语的次数.但是这次尝试坠毁并烧毁了.
任何指导都将被理解为如何创建在第一列("对")中显示公共对的数据帧以及在第二列("计数")中显示它们在文本中出现的次数.
library(qdap)
library(tm)
# from the crude data set, create a text file from the first three documents, then clean it
text <- c(crude[[1]][1], crude[[2]][1], crude[[3]][1])
text <- tolower(text)
text <- tm::removeNumbers(text)
text <- str_replace_all(text, " ", "") # replace double spaces with single space
text <- str_replace_all(text, pattern = "[[:punct:]]", " ")
text <- removeWords(text, stopwords(kind = "SMART"))
# pick the top 10 individual words by frequency, since they will likely form the most common pairs
freq.terms <- head(freq_terms(text.var = text), 10)
# create a pattern from the top words for the regex expression below
freq.terms.pat <- str_c(freq.terms$WORD, collapse = "|")
# match frequent terms that are followed by a frequent term
library(stringr)
pairs <- str_extract_all(string = text, pattern = "freq.terms.pat(?= freq.terms.pat)")
Run Code Online (Sandbox Code Playgroud)
这是努力步履蹒跚的地方.
不知道Java或Python,这些没有帮助Java计算单词对 Python计数单词对,但它们可能是其他人的有用参考.
谢谢.
这里的一个想法是创建一个带有二元组的新语料库:
二元组或二元组是标记字符串中两个相邻元素的每个序列
提取二元组的递归函数:
bigram <-
function(xs){
if (length(xs) >= 2)
c(paste(xs[seq(2)],collapse='_'),bigram(tail(xs,-1)))
}
Run Code Online (Sandbox Code Playgroud)
然后将其应用于tm
包中的原始数据。(我在这里做了一些文本清理,但是这个步骤取决于文本)。
res <- unlist(lapply(crude,function(x){
x <- tm::removeNumbers(tolower(x))
x <- gsub('\n|[[:punct:]]',' ',x)
x <- gsub(' +','',x)
## after cleaning a compute frequency using table
freqs <- table(bigram(strsplit(x," ")[[1]]))
freqs[freqs>1]
}))
as.data.frame(tail(sort(res),5))
tail(sort(res), 5)
reut-00022.xml.hold_a 3
reut-00022.xml.in_the 3
reut-00011.xml.of_the 4
reut-00022.xml.a_futures 4
reut-00010.xml.abdul_aziz 5
Run Code Online (Sandbox Code Playgroud)
二元词“abdul aziz”和“a futures”是最常见的。您应该重新清理数据以删除 (of, the,..)。但这应该是一个好的开始。
如果您想获得所有语料库的二元组频率,一个想法是计算循环中的二元组,然后计算循环结果的频率。我受益于添加更好的文本处理清理。
res <- unlist(lapply(crude,function(x){
x <- removeNumbers(tolower(x))
x <- removeWords(x, words=c("the","of"))
x <- removePunctuation(x)
x <- gsub('\n|[[:punct:]]',' ',x)
x <- gsub(' +','',x)
## after cleaning a compute frequency using table
words <- strsplit(x," ")[[1]]
bigrams <- bigram(words[nchar(words)>2])
}))
xx <- as.data.frame(table(res))
setDT(xx)[order(Freq)]
# res Freq
# 1: abdulaziz_bin 1
# 2: ability_hold 1
# 3: ability_keep 1
# 4: ability_sell 1
# 5: able_hedge 1
# ---
# 2177: last_month 6
# 2178: crude_oil 7
# 2179: oil_minister 7
# 2180: world_oil 7
# 2181: oil_prices 14
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2504 次 |
最近记录: |