我有三个矢量X,Y并且Z长度相等n.我需要创建n x n x n一个函数数组f(X[i],Y[j],Z[k]).直接的方法是顺序循环遍历3个向量中每个向量的每个元素.但是,计算阵列所需的时间呈指数增长n.有没有办法使用矢量化操作来实现它?
编辑:正如评论中所提到的,我添加了一个简单的例子来说明需要什么.
set.seed(1)
X = rnorm(10)
Y = seq(11,20)
Z = seq(21,30)
F = array(0, dim=c( length(X),length(Y),length(Z) ) )
for (i in 1:length(X))
for (j in 1:length(Y))
for (k in 1:length(Z))
F[i,j,k] = X[i] * (Y[j] + Z[k])
Run Code Online (Sandbox Code Playgroud)
谢谢.
您可以使用嵌套outer:
set.seed(1)
X = rnorm(10)
Y = seq(11,20)
Z = seq(21,30)
F = array(0, dim = c( length(X),length(Y),length(Z) ) )
for (i in 1:length(X))
for (j in 1:length(Y))
for (k in 1:length(Z))
F[i,j,k] = X[i] * (Y[j] + Z[k])
F2 <- outer(X, outer(Y, Z, "+"), "*")
> identical(F, F2)
[1] TRUE
Run Code Online (Sandbox Code Playgroud)
包含expand.gridNick K提出的解决方案的微基准测试:
X = rnorm(100)
Y = seq(1:100)
Z = seq(101:200)
forLoop <- function(X, Y, Z) {
F = array(0, dim = c( length(X),length(Y),length(Z) ) )
for (i in 1:length(X))
for (j in 1:length(Y))
for (k in 1:length(Z))
F[i,j,k] = X[i] * (Y[j] + Z[k])
return(F)
}
nestedOuter <- function(X, Y, Z) {
outer(X, outer(Y, Z, "+"), "*")
}
expandGrid <- function(X, Y, Z) {
df <- expand.grid(X = X, Y = Y, Z = Z)
G <- df$X * (df$Y + df$Z)
dim(G) <- c(length(X), length(Y), length(Z))
return(G)
}
library(microbenchmark)
mbm <- microbenchmark(
forLoop = F1 <- forLoop(X, Y, Z),
nestedOuter = F2 <- nestedOuter(X, Y, Z),
expandGrid = F3 <- expandGrid(X, Y, Z),
times = 50L)
> mbm
Unit: milliseconds
expr min lq mean median uq max neval
forLoop 3261.872552 3339.37383 3458.812265 3388.721159 3524.651971 4074.40422 50
nestedOuter 3.293461 3.36810 9.874336 3.541637 5.126789 54.24087 50
expandGrid 53.907789 57.15647 85.612048 88.286431 103.516819 235.45443 50
Run Code Online (Sandbox Code Playgroud)
这是一个额外的选项,一个可能的Rcpp实现(如果你喜欢你的循环).虽然我可能无法超越@Juliens解决方案(也许有人可以),但他们或多或少都有相同的时机
library(Rcpp)
cppFunction('NumericVector RCPP(NumericVector X, NumericVector Y, NumericVector Z){
int nrow = X.size(), ncol = 3, indx = 0;
double temp(1) ;
NumericVector out(pow(nrow, ncol)) ;
IntegerVector dim(ncol) ;
for (int l = 0; l < ncol; l++){
dim[l] = nrow;
}
for (int j = 0; j < nrow; j++) {
for (int k = 0; k < nrow; k++) {
temp = Y[j] + Z[k] ;
for (int i = 0; i < nrow; i++) {
out[indx] = X[i] * temp ;
indx += 1 ;
}
}
}
out.attr("dim") = dim;
return out;
}')
Run Code Online (Sandbox Code Playgroud)
证实
identical(RCPP(X, Y, Z), F)
## [1] TRUE
Run Code Online (Sandbox Code Playgroud)
快速基准
set.seed(123)
X = rnorm(100)
Y = 1:100
Z = 101:200
nestedOuter <- function(X, Y, Z) outer(X, outer(Y, Z, "+"), "*")
library(microbenchmark)
microbenchmark(
nestedOuter = nestedOuter(X, Y, Z),
RCPP = RCPP(X, Y, Z),
unit = "relative",
times = 1e4)
# Unit: relative
# expr min lq mean median uq max neval
# nestedOuter 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 10000
# RCPP 1.164254 1.141713 1.081235 1.100596 1.080133 0.7092394 10000
Run Code Online (Sandbox Code Playgroud)