如何将列值转换为R中数据框中每个唯一值的行?

Lea*_*neR 4 r

我有一个大型数据框,其中包含12列,分别用于两种类型的值:Rested和Active.我想将每个月的列转换为行,从而将所有月份列(Jan,Feb,Mar ...)置于"Month"下

我的数据如下:

ID      L1  L2  Year    JR  FR  MR  AR  MYR JR  JLR AGR SR  OR  NR  DR  JA  FA  MA  AA  MYA JA  JLA AGA SA  OA  NA  DA
1234    89  65  2003    11  34  6   7   8   90  65  54  3   22  55  66  76  86  30  76  43  67  13  98  67  0   127 74
1234    45  76  2004    67  87  98  5   4   3   77  8   99  76  56  4   3   2   65  78  44  53  67  98  79  53  23  65
Run Code Online (Sandbox Code Playgroud)

我试图让它显示如下(列R代表Rested,A列代表Active.月度JR,FR,MR分别表示Jan Rested,2月Rested,Mar Rested和JA,FA,MA分别表示Jan Active,2月活跃,活跃等等):

所以,在这里我试图通过创建一个新的Month列,将每个每月列转换为行并使它们彼此相邻以获得R和A值.

 ID     L1  L2  Year    Month   R   A
1234    89  65  2003    Jan     11  76
1234    89  65  2003    Feb     34  86
1234    89  65  2003    Mar     6   30
1234    89  65  2003    Apr     7   76
1234    89  65  2003    May     8   43
1234    89  65  2003    Jun     90  67
1234    89  65  2003    Jul     65  13
1234    89  65  2003    Aug     54  98
1234    89  65  2003    Sep     3   67
1234    89  65  2003    Oct     22  0
1234    89  65  2003    Nov     55  127
1234    89  65  2003    Dec     66  74
1234    45  76  2004    Jan     67  3
1234    45  76  2004    Feb     87  2
1234    45  76  2004    Mar     98  65
1234    45  76  2004    Apr     5   78
1234    45  76  2004    May     4   44
1234    45  76  2004    Jun     3   53
1234    45  76  2004    Jul     77  67
1234    45  76  2004    Aug     8   98
1234    45  76  2004    Sep     99  79
1234    45  76  2004    Oct     76  53
1234    45  76  2004    Nov     56  23
1234    45  76  2004    Dec     4   65
Run Code Online (Sandbox Code Playgroud)

我已经试过各种事情一样stack,melt,unlist

data_reshape <- reshape(df,direction="long", varying=list(c("JR", "FR", "MR", "AR", "MYR", "JR", "JLR", "AGR", "SR", "OR", "NR", "DR", "JA", "FA","MA", "AA", "MYA", "JA", "JLA","AGA", "SA", "OA","NA", "DA")), v.names="Precipitation", timevar="Month")

data_stacked <- stack(data, select = c("JR", "FR", "MR", "AR", "MYR", "JR", "JLR", "AGR", "SR", "OR", "NR", "DR", "JA", "FA","MA", "AA", "MYA", "JA", "JLA","AGA", "SA", "OA","NA", "DA"))
Run Code Online (Sandbox Code Playgroud)

但他们的结果并不是很令人期待 - 他们给出了所有年份的Jan值,然后给出了所有年份的2月值,然后给出了所有年份的3月值等等.但是我希望每年以适当的月度方式构建它们.对于整个数据集中存在的每个ID.

如何在R中实现这一目标?

Dav*_*urg 5

这是使用devel版本的可能解决方案data.table

library(data.table) ## v >= 1.9.5

res <- melt(setDT(df),
            id = 1:4, ## id variables
            measure = list(5:16, 17:ncol(df)), # a list of two groups of measure variables
            variable = "Month", # The name of the additional variable
            value = c("R", "A")) # The names of the grouped variables

setorder(res, ID, -L1, L2, Year) ## Reordering the data to match the desired output
res[, Month := month.abb[Month]] ## You don't really need this part as you already have the months numbers

#       ID L1 L2 Year Month  R   A
#  1: 1234 89 65 2003   Jan 11  76
#  2: 1234 89 65 2003   Feb 34  86
#  3: 1234 89 65 2003   Mar  6  30
#  4: 1234 89 65 2003   Apr  7  76
#  5: 1234 89 65 2003   May  8  43
#  6: 1234 89 65 2003   Jun 90  67
#  7: 1234 89 65 2003   Jul 65  13
#  8: 1234 89 65 2003   Aug 54  98
#  9: 1234 89 65 2003   Sep  3  67
# 10: 1234 89 65 2003   Oct 22   0
# 11: 1234 89 65 2003   Nov 55 127
# 12: 1234 89 65 2003   Dec 66  74
# 13: 1234 45 76 2004   Jan 67   3
# 14: 1234 45 76 2004   Feb 87   2
# 15: 1234 45 76 2004   Mar 98  65
# 16: 1234 45 76 2004   Apr  5  78
# 17: 1234 45 76 2004   May  4  44
# 18: 1234 45 76 2004   Jun  3  53
# 19: 1234 45 76 2004   Jul 77  67
# 20: 1234 45 76 2004   Aug  8  98
# 21: 1234 45 76 2004   Sep 99  79
# 22: 1234 45 76 2004   Oct 76  53
# 23: 1234 45 76 2004   Nov 56  23
# 24: 1234 45 76 2004   Dec  4  65
Run Code Online (Sandbox Code Playgroud)

安装说明:

library(devtools)
install_github("Rdatatable/data.table", build_vignettes = FALSE)
Run Code Online (Sandbox Code Playgroud)


H 1*_*H 1 5

这是一个基本重塑方法:

res <- reshape(mydf, direction="long", varying=list(5:16, 17:28), v.names=c("R", "A"), times = month.name, timevar = "Month")
res[with(res, order(ID, -L1, L2, Year)), -8]
Run Code Online (Sandbox Code Playgroud)